Биологическая химия - Лелевич Владимир Валерьянович
Роль металлов в ферментативном катализе
Не менее важную роль отводят ионам металлов в осуществлении ферментативного катализа.
Участие металлов в электрофильном катализе.
Наиболее часто эту функцию выполняют ионы металлов с переменной валентностью, имеющие свободную d-орбиталь и выступающие в качестве электрофилов. Это, в первую очередь, такие металлы, как Zn2+, Fe2+, Mn2+, Cu2+. Ионы щелочных металлов, такие так Na+ и К+, не обладают этим свойством.
В ходе электрофильного катализа ионы металлов часто участвуют в стабилизации промежуточных соединений.
Участие металлов в окислительно-восстановительных реакциях. Ионы металлов с переменной валентностью могут также участвовать в переносе электронов. Например, в цитохромах (гемсодержащих белках) ион железа способен присоединять и отдавать один электрон.
Благодаря этому свойству цитохромы участвуют в окислительно-восстановительных реакциях.
Активный центр фермента
Участок молекулы фермента, который специфически взаимодействует с субстратом, называется активным центром. Активный центр – это уникальная комбинация аминокислотных остатков в молекуле фермента, обеспечивающая непосредственное взаимодействие её с молекулой субстрата и принимающая прямое участие в акте катализа. У сложных ферментов в состав активного центра входит также кофактор. В активном центре условно различают каталитический участок, непосредственно вступающий в химическое взаимодействие с субстратом и участок связывания, который обеспечивает специфическое сродство к субстрату и формирование его комплекса с ферментом.
Свойства активных центров ферментов:
1. На активный центр приходится относительно малая часть общего объема фермента.
2. Активный центр имеет форму узкого углубления или щели в глобуле фермента.
3. Активный центр – это трехмерное образование, в формировании которого участвуют функциональные группы линейно удаленных друг от друга аминокислот.
4. Субстраты относительно слабо связываются с активным центром.
5. Специфичность связывания субстрата зависит от строго определенного расположения атомов и функциональных групп в активном центре.
У некоторых регуляторных ферментов имеется еще один центр, называемый аллостерическим или регуляторным. Он пространственно разделен с активным центром.
Аллостерический центр – это участок молекулы фермента, с которым связываются определенные обычно низкомолекулярные вещества (аллостерические регуляторы), молекулы которых не сходны по строению с субстратом. Присоединение регулятора к аллостерическому центру приводит к изменению третичной и четвертичной структуры молекулы фермента и, соответственно, конформации активного центра, вызывая снижение или повышение ферментативной активности.
Механизм действия ферментов
В любой ферментативной реакции выделяют следующую стадийность:
E + S ↔ [ES] ↔E + P
где Е – фермент, S – субстрат, [ES] – фермент-субстратный комплекс, Р – продукт.
Механизм действия ферментов может быть рассмотрен с двух позиций: с точки зрения изменения энергетики химических реакций и с точки зрения событий в активном центре.
Энергетические изменения при химических реакциях
Любые химические реакции протекают, подчиняясь двум основным законам термодинамики: закону сохранения энергии и закону энтропии. Согласно этим законам, общая энергия химической системы и её окружения остаётся постоянной, при этом химическая система стремится к снижению упорядоченности (увеличению энтропии). Для понимания энергетики химической реакции недостаточно знать энергетический баланс входящих и выходящих из реакции веществ. Необходимо учитывать изменения энергии в процессе данной химической реакции и роль ферментов в динамике этого процесса.
Чем больше молекул обладает энергией, превышающей уровень Еа (энергия активации) тем выше скорость химической реакции. Повысить скорость химической реакции можно нагреванием. При этом увеличивается энергия реагирующих молекул. Однако, для живых организмов высокие температуры губительны, поэтому в клетке для ускорения химических реакций используются ферменты. Ферменты обеспечивают высокую скорость реакций при оптимальных условиях, существующих в клетке, путём понижения уровня Еа. Таким образом, ферменты снижают высоту энергетического барьера, в результате чего возрастает количество реакционноспособных молекул, и, следовательно, увеличивается скорость реакции.
Роль активного центра в ферментативном катализе
В результате исследований было показано, что молекула фермента, как правило, во много раз больше молекулы субстрата, подвергающегося химическому превращению этим ферментом. В контакт с субстратом вступает лишь небольшая часть молекулы фермента, обычно от 5 до 10 аминокислотных остатков, формирующих активный центр фермента. Роль остальных аминокислотных остатков состоит в обеспечении правильной конформации молекулы фермента для оптимального протекания химической реакции.
Активный центр на всех этапах ферментативного катализа нельзя рассматривать как пассивный участок для связывания субстрата. Это комплексная молекулярная «машина», использующая разнообразные химические механизмы, способствующие превращению субстрата в продукт.
В активном центре фермента субстраты располагаются таким образом, чтобы участвующие в реакции функциональные группы субстратов находились в непосредственной близости друг к другу. Это свойство активного центра называют эффектом сближения и ориентации реагентов. Такое упорядоченное расположение субстратов вызывает уменьшение энтропии и, как следствие, снижение энергии активации (Еа), что определяет каталитическую эффективность ферментов.
Активный центр фермента также способствует дестабилизации межатомных связей в молекуле субстрата, что облегчает протекание химической реакции и образование продуктов. Это свойство активного центра называют эффектом деформации субстрата.
Молекулярные механизмы ферментативного катализа
Механизмы ферментативного катализа определяются ролью функциональных групп активного центра фермента в химической реакции превращения субстрата в продукт.
Выделяют 2 основных механизма ферментативного катализа:
1. кислотно-основной катализ
2. ковалентный катализ.
Кислотно-основной катализ
Концепция кислотно-основного катализа объясняет ферментативную активность участием в химической реакции кислотных групп (доноры протонов) и/или основных групп (акцепторы протонов). Кислотно-основной катализ – часто встречающееся явление. Аминокислотные остатки, входящие в состав активного центра, имеют функциональные группы, проявляющие свойства как кислот, так и оснований.
К аминокислотам, участвующим в кислотно-основном катализе, в первую очередь относят Цис, Тир, Сер, Лиз, Глу, Асп и Гис. Радикалы этих аминокислот в протонированной форме – кислоты (доноры протона), в депротонированной – основания (акцепторы протона). Благодаря этому свойству функциональных групп активного центра ферменты становятся уникальными биологическими катализаторами, в отличие от небиологических катализаторов, способных проявлять либо кислотные, либо основные свойства.