Н. Федюкович - Анатомия и физиология человека: Учебное пособие.
Электрические явления в сердце. Электрокардиограмма. Появление электрических потенциалов в сердечной мышце связано с движением ионов через клеточную мембрану. Основную роль при этом играют катионы натрия и калия. Известно, что внутри клетки калия значительно больше, чем в околоклеточной жидкости, концентрация внутриклеточного натрия, наоборот, значительно меньше, чем околоклеточного. В состоянии покоя наружная поверхность клетки миокарда имеет положительный заряд в результате перевеса катионов натрия; внутренняя поверхность клеточной мембраны имеет отрицательный заряд в связи с перевесом внутри клетки анионов (С1-, НСО-3 и др.). В этих условиях клетка поляризована. Под влиянием внешнего электрического импульса клеточная мембрана становится проницаемой для катионов натрия, которые направляются внутрь клетки, и переносит туда свой положительный заряд. Наружная поверхность данного участка клетки приобретает отрицательный заряд в связи с перевесом там анионов. Этот процесс называется деполяризацией и связан с потенциалом действия (рис. 99). Скоро вся наружная поверхность клетки снова приобретает отрицательный заряд, а внутренняя — положительный. Таким образом, происходит обратная поляризация. Если выход калия из клетки превышает поступление натрия в клетку, тогда наружная поверхность мембраны снова постепенно приобретает положительный заряд, а внутренняя — отрицательный. Этот процесс называется реполяризацией. Вышеперечисленные процессы происходят во время систолы. Если вся наружная поверхность снова приобретает положительный заряд, а внутренняя — отрицательный, то это соответствует диастоле. Во время диастолы происходят постепенные обратные движения ионов калия и натрия, которые мало влияют на заряд клетки, поскольку ионы натрия выходят из клетки, а ионы калия входят в нее одновременно. Эти процессы уравновешивают друг друга.
Рис. 99. Схема потенциала действия:
а — местные колебания мембранного потенциала; b — восходящая часть пика потенциала действия (фаза деполяризации); с — нисходящая часть пика потенциала действия (фаза реполяризации); d — отрицательный следовый потенциал; е — положительный следовый потенциал. Стрелкой указан момент нанесения раздражения
Вышеназванные процессы относятся к возбуждению единичного мышечного волокна миокарда. Возникнув при деполяризации, импульс вызывает возбуждение соседних участков миокарда, которое постепенно охватывает весь миокард, и развивается по типу цепной реакции. Возбуждение сердца начинается в синусном узле. Затем от синусного узла процесс возбуждения распространяется на предсердия по предсердным проводящим путям. От предсердий оно идет к атриовентрикулярному узлу, где происходит задержка импульса в связи с его более медленным проведением в этом участке. Обогнув атриовентрикулярное соединение, возбуждение переходит на ствол пучка Гиса, а затем на его разветвление — на правую и левую ножки. Последние образуют сеть волокон Пуркине, которые широко анастомозируют друг с другом.
Электрокардиограмма (ЭКГ) представляет собой запись суммарного электрического потенциала, появившегося при возбуждении множества миокардиальных клеток, а метод исследования называется электрокардиографией.
Для регистрации ЭКГ у человека применяют три стандартных биполярных отведения — расположение электродов на поверхности тела. Первое отведение — на правой и левой руках, второе — на правой руке и левой ноге, третье — на левой руке и левой ноге. Кроме стандартных отведении, применяют отведения от других точек грудной клетки в области расположения сердца, а также однополюсные, или униполярные, отведения.
Типовая ЭКГ человека состоит из пяти положительных и отрицательных колебаний — зубцов, соответствующих циклу сердечной деятельности. Их обозначают латинскими буквами Р, Q, R, S, Т, а грудные отведения (перикардиальные) - V (V1, V2 V3, V4, V5, V6). Три зубца (Р, R, Т) направлены вверх (положительные зубцы), а два (Q, S) — вниз (отрицательные зубцы). Зубец Р отражает период возбуждения предсердий, продолжительность его равна 0,08—0,1 с. Сегмент P - Q соответствует проведению возбуждения через предсердно-желудочковый узел к желудочкам. Он продолжается 0,12—0,20 с. Зубец Q отражает деполяризацию межжелудочковой перегородки. Зубец R — самый высокий в ЭКГ, он представляет собой деполяризацию верхушки сердца, задней и боковой стенок желудочков. Зубец S отражает охват возбуждением основания желудочков, зубец Т — процесс быстрой реполяризации желудочков. Комплекс QRS совпадает с реполяризацией предсердий. Его продолжительность составляет 0,06—0,1 с. Комплекс QRST обусловлен появлением и распространением возбуждения в миокарде желудочков, поэтому его называют желудочко-вым комплексом. Общая продолжительность QRST приблизительно равна 0,36 с. Условная линия, которая соединяет две точки ЭКГ с наибольшей разностью потенциалов, называется электрической осью сердца.
Электрокардиография в диагностике заболеваний сердца дает возможность детально исследовать изменения сердечного ритма, возникновение дополнительного очага возбуждения при появлении экстрасистол, нарушение проводимости возбуждения по проводящей системе сердца, ишемию, инфаркт миокарда.
Основные процессы гемодинамики. Кровяное давление. Пульс. Движение крови по сердечно-сосудистой системе определяется процессами гемодинамики, которые отражают физические явления движения жидкости в замкнутых сосудах. Гемодинамика определяется двумя факторами: давлением на жидкость и сопротивлением, испытываемым при трении о стенки сосудов и вихревых движениях.
Силой, образующей давление в сосудистой системе, является сердце. У взрослого человека в сосудистую систему при каждом сокращении сердца выбрасывается 60—70 мл крови (систолический объем) или 4—5 л/мин (минутный объем). Сила, движущая кровь, — разность давлений, возникающая в начале и в конце трубки. Движение крови по сосудистой системе носит ламинарный характер (движение крови отдельными слоями параллельно оси сосуда). При этом слой, прилегающий к стенке сосуда, практически остается неподвижным, по слою скользит второй, по второму — третий и т. д. Форменные элементы крови составляют центральный осевой поток; плазма движется ближе к стенкам. Известно, что чем меньше диаметр сосуда, тем ближе располагаются центральные слои крови к стенкам и тем больше торможение. Это означает, что в мелких сосудах скорость кровотока ниже, чем в крупных. Так, в аорте она составляет 50 см/с, в артериях — 30, в капиллярах — 0,5—1,0, венах — 5—14, в полой вене — 20 см/с.
Кроме ламинарного, в сосудистой системе существует турбулентное давление с характерным завихрением крови. Ее частицы движутся не только параллельно оси сосуда, но и перпендикулярно ей. Основная кинетическая энергия, необходимая для движения крови, дается сердцем во время систолы. Одна часть энергии идет на проталкивание крови, другая — превращается в потенциальную, которая необходима для растяжения во время систолы стенок аорты, крупных и средних сосудов. Во время диастолы энергия стенок аорты и сосудов переходит в кинетическую, способствуя движению крови по сосудам.
Сосуды способны также активно реагировать на изменения в них кровяного давления. При повышении давления гладкие мышцы стенок сокращаются и диаметр сосудов уменьшается. Таким образом, пульсирующий ток крови, благодаря особенностям аорты и крупных сосудов, выравнивается и становится относительно беспрерывным. В норме отток крови от сердца соответствует ее притоку. Это означает, что объем крови, протекающий за единицу времени через всю артериальную и всю венозную системы большого и малого кругов кровообращения, одинаков.
Скорость кровотока в сосудистом русле разная и зависит от общей суммы площади просветов сосудов этого калибра на данном участке тела. Наименьшее сечение у аорты, а скорость движения крови в ней самая большая — 50—70 см/с. Наибольшей суммарной площадью поперечного сечения обладают капилляры — в 800 раз больше, чем у аорты. Соответственно и скорость крови в них около 0,05 см/с. В артериях она составляет 20—40 см/с, в артерио-лах — 0,5 см/с.
Уровень артериального давления состоит из трех главных факторов, таких, как нагнетающая сила сердца, периферическое сопротивление сосудов, объем и вязкость крови. Однако главным из них является работа сердца. При каждой систоле и диастоле в артериях кровяное давление колеблется. Подъем его во время систолы характеризуется как систолическое (максимальное) давление. Падение давления во время диастолы соответствует диастолическому (минимальному) давлению. Его величина зависит главным образом от периферического сопротивления кровотоку и частоты сердечных сокращений. Разницу между систолическим и диастолическим давлением называют пульсовым давлением.