Сергей Бабичев - Медицинская микробиология, иммунология и вирусология
У бактерий очень часто обнаруживают криптические плазмиды, т. е. плазмиды, функции которых еще не установлены. Поэтому классификация их, несомненно, будет уточняться. Уже сейчас известны плазмиды, контролирующие различные факторы патогенности бактерий (факторы адгезии, инвазии и т. п.).
Существуют два основных способа определения плазмид у бактерий:
1) биологический – по тем дополнительным признакам, которыми они наделяют своего хозяина;
2) биофизический – по выявлению плазмидных ДНК.
Для изучения биологии плазмид и их молекулярно-генетической организации широко используют различные генетические методы, методы клонирования, выделения чистых плазмидных ДНК, определения их молекулярных масс, составление рестриктограмм путем разрезания различными эндонуклеазами и определения размеров получаемых фрагментов, а также секвенирования. Сами по себе плазмиды, благодаря их относительно малым размерам и способности к саморепликации, часто используются в качестве векторов для клонирования различных генов и их последующего изучения.
Все известные плазмиды представляют собой кольцевидные суперспирализованные молекулы двунитевой ДНК, размеры которых варьируют от 1,5 до 200 МД и более (от 1500 до 400 000 пар нуклеотидов). Однако чаще всего встречаются плазмиды с м. м. 3 – 6 или 50 – 70 МД.
Таблица 4
Классификация плазмид по свойствам, которыми они наделяют своих носителей
В соответствии с размерами плазмидной ДНК ее молекулярно-генетическая организация характеризуется определенным уровнем сложности. Чем больше молекулярная масса, тем больше и сложнее набор генов, тем многообразнее функции плазмид. Они несут гены саморепликации; гены, контролирующие самоперенос или мобилизацию на перенос; другие гены, определяющие специфические функции самой плазмиды.
Кроме того, в ДНК плазмид могут быть гены, которые наделяют клетку-хозяина многими другими свойствами. Очень часто эти гены интегрируются в плазмидную ДНК в виде транспозонов, поэтому молекулярно-генетическая организация плазмид, особенно высокомолекулярных, очень сложна. Часть генетической карты одной из наиболее часто используемых для изучения генетики плазмид – плазмиды рКМ101, представлена на рис. 50. Для плазмид как живых существ характерны следующие свойства, частью присущие только им и контролируемые их специфическими генами:
1. Саморегулируемая репликация. Эта функция свойственна всем живым организмам. В составе плазмидных ДНК имеются фиксированная точка ori (точка начала репликации) и соответствующие гены, контролирующие репликацию. Репликация мелких плазмид требует, очевидно, дополнительного участия генов клетки-хозяина.
2. Явление поверхностного исключения. Этот механизм не позволяет проникнуть в клетку, уже содержащую плазмиду, другой родственной ей плазмиде. Поверхностное исключение обеспечивается синтезом под контролем генов плазмиды особых белков наружной мембраны, которые препятствуют установлению контакта этой клетки с клеткой, несущей такую же плазмиду, или подавляют конъюгативный метаболизм ДНК этой плазмиды.
Рис. 50. Молекулярная организация плазмиды pKM101. Конъюгативная плазмида pKM101 IncN-группы является производной плазмиды R46, у которой утрачена область генов, контролирующая устойчивость к антибиотикам. Широко используется для изучения механизмов генетической регуляции плазмидных функций
3. Явление несовместимости. Суть его заключается в том, что две близкородственные плазмиды не могут стабильно сосуществовать в одной клетке, одна из них подвергается элиминации (удалению).
4. Контроль числа копий плазмиды на хромосому клетки. Различают малокопийные (1 – 4 копии) и многокопийные плазмиды (12 – 38 копий, например у плазмиды R6K). Наличие собственных генов репликации позволяет плазмиде осуществлять последнюю независимо от каких-либо событий хромосомной репликации или клеточного цикла клетки-хозяина.
Информация, необходимая для осуществления репликации плазмиды, обычно заключена в небольшой участок ее ДНК, получивший название основного, или базового, репликона. У малокопийных плазмид он состоит из 2,0 – 2,5 т. п. н., а у многокопийных – из 1 т. п. н. Система, которая регулирует репликацию, контролирует также и число копий, и явление несовместимости. Этот контроль осуществляется путем саморегуляции процессов транскрипции и трансляции генов репликации, опосредуемой продуктами их собственных генов: «антисмысловыми» РНК и особыми белками.
5. Контроль стабильного сохранения плазмид в клетке-хозяине (контроль стабильного поддержания).
6. Контроль равномерного распределения дочерних плазмид в дочерние бактериальные клетки. Последние две функции тесно взаимосвязаны. Природные бактериальные плазмиды стабильно сохраняются в клетке-хозяине. Это указывает на то, что их распределение между дочерними клетками происходит не рандомически, т. е. не по принципу случайности, а существует генетический механизм контроля не только репликации, но и равномерного распределения (сегрегации) вновь синтезированных плазмид при клеточном делении. Гены, осуществляющие этот контроль, независимы от системы контроля репликации. Более того, эти гены даже взаимозаменяемы у разных плазмид без утраты своих функций. Функции стабильного поддержания и равномерного распределения опосредуются различными механизмами. Взаимосвязь этих функций с жизнью клеткихозяина настолько важна для плазмид и клеток, что клетки, утратившие плазмиду, погибают. Плазмида «вынуждает» клетку-хозяина даже ценой собственной жизни обеспечивать ее воспроизводство и распространение по вертикали и горизонтали. У F-плазмиды обнаружены гены типа hok (англ. host killing – убивающие хозяина), продукты которых вызывают быструю гибель клетки, утратившей плазмиду (в содержащих плазмиды клетках действие этих продуктов репрессировано другим геном плазмиды). Следовательно, носительство плазмид для клетки-хозяина становится генетически необходимым, благодаря этому обеспечивается существование плазмид как организмов.
7. Способность к самопереносу (у конъюгативных плазмид).
8. Способность к мобилизации на перенос (у неконъюгативных плазмид).
9. Способность наделять клетку-хозяина дополнительными важными для него биологическими свойствами, способствующими выживанию бактерий, а следовательно, и плазмид в природе.
Жизненный цикл плазмид складывается из двух главных процессов: вегетативной (или конъюгативной) репликации и равномерного распределения между дочерними клетками. Оба эти процесса относительно независимы друг от друга и контролируются специфическими системами плазмид. Однако вегетативная репликация плазмид и распределение их между дочерними клетками скоординированы с клеточным делением так, что дочерняя клетка стабильно получает необходимое число копий данной плазмиды.
Распространение плазмид
Плазмиды распространяются среди бактерий двумя способами: путем передачи от родительской клетки дочерним клеткам в процессе клеточного деления, т. е. по вертикали, и путем переноса между клетками в популяции бактерий независимо от клеточного деления, т. е. по горизонтали. Существует несколько генетических механизмов переноса плазмид между бактериальными клетками:
а) путем трансформации;
б) с помощью трансдуцирующих фагов;
в) путем мобилизации на перенос с помощью конъюгативных плазмид;
г) с помощью механизма самопереноса, контролируемого системой генов, объединенных в tra-оперон.
В зависимости от наличия или отсутствия этого оперона плазмиды делятся на конъюгативные и неконъюгативные. Основную роль в широком распространении плазмид играет механизм конъюгационной передачи.
Системы tra-оперонов у разных конъюгативных плазмид имеют определенное сходство, что свидетельствует о том, что они возникли, очевидно, из одного общего предшественника. Однако у разных конъюгативных плазмид они существенно различаются как по количеству tra-генов, так и по характеру их локализации (рис. 51; см. рис. 50). Наиболее подробно система tra-оперона изучена у F-плазмиды, которая является наиболее типичным представителем конъюгативных плазмид. Ее главное биологическое назначение у энтеробактерий – обеспечение их донорными функциями. Именно F-плазмиды контролируют у них конъюгативный обмен генетическим материалом. F-плазмида состоит из 94,5 тыс. пар нуклеотидов и имеет около 90 генов (см. рис. 51). Система tra-генов у F-плазмиды имеет следующий состав: oriT finO traO traM finP traJ traY traA traL traE traK traB traP traV traW traC traU traN traF traQ traH traG traS traT traD traI traZ.