Григорий Кассиль - Внутренняя среда организма
Еще в начале нашего столетия У. Кеннон в своей прозвучавшей на весь мир книге, известной у нас под названием «Физиология эмоций», показал, что при боли, голоде, страхе и ярости, т. е. состояниях, отнесенных впоследствии к стрессовым, содержание адреналина в крови резко повышается. Г. Селье в своих первых работах писал в основном о гипофизарно-надпочечниковой системе, считая ее центральной осью, вокруг которой вращаются остальные механизмы стресс-реакции.
Однако это только схема и, по нашим данным, далеко неполная. Вегетативно-гуморально-гормональные взаимоотношения при стрессе значительно сложнее. В них принимают участие многочисленные биологически активные вещества эрго- и трофотропного ряда, ферментные и связывающие системы, вступающие в действие на разных этапах стресс-реакции. Важную роль, как показали результаты наших исследований, играет гематоэнцефалический барьер и, возможно, другие гистогематические барьеры.
В течение многих лет сотрудники нашей лаборатории изучали различные виды стресса, нарушающие в той или иной форме относительное постоянство внутренней среды и способные вывести организм из состояния гомеостаза. На животных (крысах и морских свинках) исследовалось влияние черепно-мозговой травмы, болевого синдрома центрального и периферического происхождения, длительного обездвиживания, вибрации, холода, физических нагрузок (бег в колесе, плавание). На людях — влияние черепномозговой травмы, гипокинезии укачивания, различных видов нервно-эмоциональной деятельности, гипоксии, лишения сна, спортивной деятельности (тренировок, соревнований). Под наблюдением находились лица различных профессий: летчики, спортсмены, работники железнодорожного транспорта (операторы, диспетчеры, дежурные, машинисты), врачи, инженеры, сотрудники научно-исследовательских лабораторий. Для оценки эрготропных функций организма в крови, моче, органах и тканях определялись адреналин, норадреналин, дофамин, ДОФА, некоторые продукты превращения катехоламинов. Высчитывалось соотношение НА/А как показатель состояния медиаторного и гормонального звеньев симпатоадреналовой системы.
Среди веществ, вызывающих трофотропные реакции в организме, мы исследовали ацетилхолин, гистамин, серотонин, частично инсулин, а также регулирующие их содержание и активность ферментные и связывающие системы. Одновременно изучалось состояние гипоталамо-гипофизарно-надпочечниковой системы, значение которой в развитии стресс-реакций столь исчерпывающе описано Г. Селье и вслед за ним огромным числом советских и зарубежных исследователей. Работы, выполненные нами совместно с рядом сотрудников лаборатории (И. Л. Вайсфельд, Г. Л. Шрейберг, С. Д. Галимов, Н. Н. Шаров и др.), показывают, что при всех формах стресса первично активируется симпатоадреналовая система как в гормональном, так и медиаторном звеньях.
Опыты на животных. Для 1-й фазы стресса (быстро наступающей активации) характерно освобождение норадреналина нервными элементами мозга. Каждое экстремальное воздействие на организм, возбуждая кору и лимбико-ретикулярную систему головного мозга, вызывает освобождение норадреналина из связанной клетками гипоталамуса формы.
Американский ученый Л. Корф показал, что норадреналин освобождается при стрессе из связанной формы не только в гипоталамусе, но и в коре головного мозга, причем это происходит под влиянием содержащих норадреналин клеток особого нервного образования — синего пятна, расположенного недалеко от 4-го желудочка и связанного с высшими отделами центральной нервной системы норадренергическими волокнами. Кратковременное плавание крыс вызывает сначала увеличение, а затем снижение содержания норадреналина в головном мозге. При длительном беге крыс в колесе уровень норадреналина в мозге уменьшается, причем утомление вызывает менее выраженные сдвиги, чем «вхождение в бег». Однако различные виды стрессовых реакций по-разному изменяют содержание норадреналина в гипоталамусе и других отделах мозга. Так, например, болевой синдром, вызванный электрическим раздражением седалищного нерва, характеризуется наиболее выраженным уменьшением уровня норадреналина в гипоталамусе, в то время как в других отделах мозга изменения отсутствуют. При некоторых других видах болевого синдрома количество норадреналина в гипоталамусе не меняется, а в полушариях мозга снижается.
Действуя на чувствительные к катехоламинам элементы ретикулярной формации, норадреналин приводит в состояние повышенной активности норадренергические элементы головного мозга и тем самым усиливает деятельность всей симпатоадреналовой системы. Происходит повышение синтеза адреналина в мозговом слое надпочечников и увеличение его выхода в кровь. В зависимости от активности симпатического отдела вегетативной нервной системы нарастает также содержание норадреналина в крови. Интересно отметить, что уровень адреналина и норадреналина в крови увеличивается особенно отчетливо у тренированных животных, адаптированных к повторным стрессам (бег в колесе, плаванье, гипоксия). В этом периоде, несмотря на повышенный выброс адреналина из надпочечников в кровь, содержание его в самих железах не уменьшается. Они исправно синтезируют гормон и бесперебойно выводят его в кровь. Содержание адреналина в ткани сердца увеличивается вследствие усиленного захвата его из крови. Одновременно в сердце происходит освобождение норадреналина из нервных окончаний симпатической нервной системы, хотя общее содержание его в сердце может как увеличиваться, так и уменьшаться, что зависит от соотношения процессов образования и потребления.
Для 2-й фазы длительной и устойчивой активации характерно продолжающееся поступление адреналина в кровь, сопровождающееся постепенным уменьшением содержания его в мозговом слое надпочечников. Надпочечники понемногу, постепенно, исподволь, переходят в стадию истощения. Эта залог будущей перестройки всей экономики организма, предвестник нарастания трофотропных влияний, перехода в стадию общего истощения и болезни. Пока же увеличивается поступление норадреналина из окончаний симпатических нервов сердца и активируется его синтез из предшественников.
Накопляясь в крови, адреналин через гематоэнцефалический барьер поступает в область адренергических элементов заднего гипоталамуса. Установлено, что в этом отделе центральной нервной системы барьер проницаем для катехоламинов. Поступление их ведет к активации системы гипоталамус — гипофиз — кора надпочечников через ретикулярную формацию и стимулирует образование специальными нейросекреторными клетками кортиколиберина, который, поступая в переднюю долю гипофиза, стимулирует образование адренокортикотропного гормона (АКТГ), что, в свою очередь, активирует синтез и выброс кортикостероидов из коры надпочечников в кровь.
Накопление этих гормонов во внутренней среде представляет, по мнению Г. Селье, решающий фактор в развитии состояния стресса. От их химического строения зависит характер заболевания, возникновение ряда «неспецифических», т. е. общих для любой болезни, но не характерных для отдельной формы патологии, явлений. Нарушение секреции кортикостероидов приводит к возникновению «болезней адаптации», суть которых заключается в потере организмом наиболее важной для его жизнедеятельности способности приспособляться (адаптироваться) к условиям существования.
По нашим данным, существует определенная коррелятивная зависимость между содержанием в крови адреналина и образованием кортикостероидов. Однако зависимости между уровнем норадреналина и выбросом кортикостероидов мы не обнаружили. Это наблюдение имеет важное принципиальное значение. Видимо, при высокой активности нервного отдела симпатоадреналовой системы (норадреналиновый характер стресс-реакции) потребность организма в кортикостероидах ниже, чем при высокой реактивности гормонального отдела симпатоадреналовой системы (адреналиновый характер стресс-реакции).
Работы Г. Л. Шрейберга показали, что между чувствительными к катехоламинам элементами головного мозга и нейросекреторными клетками, образующими кортиколиберин, находится промежуточное звено в виде серотонин- и ацетилхолинергических элементов. Кортиколиберин, поступая в гипофиз, вызывает образование адренокортикотропного гормона, что приводит к повышению активности коры надпочечников и поступлению кортикостероидов в кровь. Как уже указывалось, значение этого процесса в осуществлении стресс-реакции хорошо известно.
Итак, при стрессе адреналин довольно сложным путем через многие промежуточные звенья участвует в процессе образования и поступления во внутреннюю среду гормонов коры надпочечников — кортикостероидов. Казалось бы, мозговой и корковый слои надпочечников, анатомически связанные друг с другом, «общаются» через длинную цепь нервных и гуморальных звеньев регуляции. Но несколько неожиданно выявилась и обратная связь событий. В нашей лаборатории установлено, что у подопытных крыс, плавающих несколько часов подряд, в последней стадии стресса (истощения) почти полностью прекращается образование адреналина. Если же подопытному животному, находящемуся на грани гибели, ввести под кожу гидрокортизон, его надпочечники вновь начинают вырабатывать адреналин. Более того, образование адреналина восстанавливается под влиянием гидрокортизона и в изолированных, растертых надпочечниках «стресс-крысы». Вот пример удивительного единения, необычной гуморальногормональной регуляции физиологических и биохимических процессов в организме в состоянии напряжения. Проникая через гематоэнцефалический барьер в центральную нервную систему, кортикостероиды в одних случаях повышают, в других снижают образование кортиколиберина, который регулирует содержание кортикостероидов к крови. Чем больше кортикостероидов проникло в мозг, тем ниже поступление либерина в гипофиз и, следовательно, тем слабее образование адренокортикотропного гормона и меньше кортикостероидов в крови и моче.