Биологическая химия - Лелевич Владимир Валерьянович
Больше всего (80–82%) в клетке содержится рибосомальной РНК. Различают 5S, 5.8S, 18S и 28S рРНК. Они имеют многочисленные спирализованные участки и образуют комплексы с белками – рибосомы. Рибосомы эукариотических клеток имеют константу седиментации 80S, состоят из двух субъединиц. Малая 40S-субъединица содержит 18S РНК и 33 белка, большая 60S-субъединица содержит 28S, 5S и 5.8S РНК, а также 50 белков. рРНК имеют V-образную или Y-образную форму. Они образуют каркас, к которому прикрепляются белки, создавая плотно упакованный рибонуклеопротеин. Вторичная структура создается за счет коротких двухспиральных шпилек. Примерно треть молекулы представлена однотяжевыми участками, с которыми преимущественно связаны белки рибосом.
Гибридизация нуклеиновых кислот
Вторичная структура нуклеиновых кислот образуется за счет слабых взаимодействий – водородных и гидрофобных. При нагревании раствора ДНК такие связи разрушаются, и полинуклеотидные цепи расходятся. Этот процесс называют денатурацией. При денатурации снижается вязкость раствора, а также наблюдается увеличение его оптической плотности – гиперхромный эффект. Этот эффект вызван тем, что при денатурации экранированность азотистых оснований уменьшается, и они более интенсивно поглощают свет с =260 нм.
Если же раствор, содержащий денатурированную ДНК, медленно охладить, могут вновь сформироваться двухспиральные структуры, идентичные исходным. Такой процесс получил название ренатурации. На явлении денатурации и ренатурации основан метод, называемый молекулярной гибридизацией. Процесс гибридизации может осуществляться между двумя любыми цепями нуклеиновых кислот (ДНК – ДНК, ДНК – РНК) при условии, что они содержат комплементарные последовательности нуклеотидов. Гибриды могут быть совершенными (полная комплементарность цепей) и несовершенными (частичная комплементарность цепей). Методом молекулярной гибридизации можно установить сходство и различие первичной структуры разных образцов нуклеиновых кислот. Это используется для выделения генов и РНК, изучения первичной структуры нуклеиновых кислот, определения степени родства, а также для получения рекомбинантных ДНК.
Методы изучения структуры нуклеиновых кислот
В течение ряда лет о первичной структуре нуклеиновых кислот судили по косвенным данным (оценивали количество пуриновых и пиримидиновых оснований, распределение минорных оснований, особенности физических свойств). Усовершенствование метода электрофореза в полиакриламидном геле и открытие рестриктаз позволило перейти на качественно другой уровень исследований в данной области. Рестриктазы применяются для разрезания нуклеиновых кислот на фрагменты, причем разделение происходит в строго определенных точках. Полученные фрагменты разделяют методом электрофореза, затем исследуют их нуклеотидную последовательность. Для секвенирования (определения последовательности мономеров) применяют методы Максама-Гилберта или Сэнгера.
Глава 6. Биосинтез нуклеиновых кислот
Способность к передаче наследственных свойств путем переноса генетической информации является уникальным свойством живых систем.
В организмах существуют три варианта передачи генетической информации.
1. Репликация - перенос генетической информации в пределах одного класса нуклеиновых кислот (от ДНК к ДНК или у некоторых вирусов от РНК к РНК).
2. Транскрипция – перенос информации между разными классами нуклеиновых кислот, бывает прямая (от ДНК к РНК) и обратная (от РНК к ДНК).
3. Трансляция – перенос генетической информации от мРНК к белку.
Центральная догма молекулярной биологии отражает направление переноса генетической информации в клетке: от ДНК через РНК к белку. Согласно ей, не может быть переноса информации от белка к РНК, но допускается перенос от РНК к ДНК. То есть, генетическая информация существует только в форме нуклеиновой кислоты и не может передаваться от аминокислотных последовательностей белка.
Биосинтез ДНК
Удвоение ДНК у эукариот проходит в S-фазу клеточного цикла. Инициацию репликации регулируют специфические сигнальные белковые молекулы – факторы роста. Они связываются с рецепторами клеточных мембран, генерируя сигнал, который и побуждает клетку к началу репликации. Одними из первых активируются гены, кодирующие белки циклины. Циклинзависимые киназы, связывая циклин, переходят в активную форму и фосфорилируют специфические белки, которые регулируют синтез ферментов, обеспечивающих репликацию.
Синтез новых цепей ДНК может произойти только при расхождении родительских цепей. В точке начала репликаци (сайты инициации или ориджины) происходит локальное расхождение цепей ДНК и образуются две репликативные вилки, движущиеся в противоположных направлениях.
В образовании репликативной вилки принимает участие ряд белков и ферментов (Рис. 6.1.):
1. семейство ДНК-топоизомераз обеспечивает устранение суперспирализации.
2. ДНК-хеликазы, используя энергию АТФ, осуществляют разрыв водородных связей между полинуклеотидными цепями и расплетают двойную спираль ДНК.
В поддержании этого участка ДНК в раскрученном состоянии участвуют ДНК-связывающие белки (ДСБ). Они связываются с одноцепочечной ДНК по всей длине разделившихся цепей, предотвращая их комплементарное взаимодействие.
Репликация ДНК осуществляется ДНК-зависимыми ДНК-полимеразами. Субстратами и одновременно источниками энергии для синтеза служат дАТФ, дГТФ, дЦТФ и дТТФ. Ферменты проявляют каталитическую активность только в присутствии предварительно раскрученной матричной двухцепочечной ДНК. Синтез цепей происходит в направлении 5`→3` растущей цепи. Матричная цепь всегда считывается в направлении 3`→5`, т. е. синтезируемая цепь всегда антипараллельна матричной цепи. В ходе репликации образуются 2 дочерние цепи, представляющие собой копии матричных цепей.
В синтезе эукариотических ДНК принимают участие 5 ДНК-полимераз. ДНК-полимераза γ обеспечивает репликацию только митохондриальной ДНК. ДНК-полимеразы α, β, δ, ε участвуют в синтезе ДНК в ядре клеток.
Инициирует репликацию ДНК-полимераза α. Фермент обладает сродством к определенному сайту одноцепочечной ДНК. Присоединяясь к нему, ДНК-полимераза синтезирует небольшой фрагмент РНК – праймер, состоящий из 8–10 рибонуклеотидов, к которому присоединяет еще около 50 дезоксирибонуклеотидов. Таким образом, ДНК-полимераза α синтезирует олигонуклеотид, состоящий из короткой последовательности РНК и фрагмента цепи ДНК.
Рис. 6.1. Репликация ДНК
Олигонуклеотид, синтезированный ДНК-полимеразой α и образующий небольшой двухцепочечный фрагмент с матрицей, позволяет присоединиться ДНК-полимеразе δ и продолжить синтез новой цепи в направлении 5`→3` по ходу раскручивания репликативной вилки. Выбор ДНК-полимеразой очередного нуклеотида определяется матрицей: включение нуклеотида в синтезируемую цепь ДНК невозможно без предварительного связывания азотистого основания водородными связями с комплементарным нуклеотидом матричной цепи.
В каждой репликативной вилке идет одновременно синтез двух дочерних цепей. Направление синтеза цепи ДНК совпадает с направлением движения репликативной вилки лишь для одной из вновь синтезируемых цепей (лидирующая цепь). На второй матричной цепи синтез новой цепи осуществляется двумя ферментами: ДНК-полимеразой α и ДНК-полимеразой ε в направлении 5`→3`, но против движения репликативной вилки. Поэтому вторая цепь синтезируется прерывисто, короткими фрагментами, которые по имени открывшего их исследователя называют «фрагменты Оказаки». Дочернюю цепь, синтез которой происходит фрагментами, а потому отстает, называют отстающей цепью.