Kniga-Online.club

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Читать бесплатно Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

— Это я! — сказал комплексный человечек Наклонная Стрелка.

— А это я! — ответила Горизонтальная Стрелка.

— И я! — отозвалась Вертикальная Стрелка.

— Понятно? — спросил Мнимий Радиксович.

Илюша поглядел на стрелки и не совсем уверенно сказал:

— Маленькие стрелки на осях — ведь это его проекции?

Мнимая ось.

Действительная ось.

Стрелка ОА есть геометрическая сумма стрелок ОВ и ОС, которая получается по правилу сложения сил в механике. Стрелка ОА есть (a + bi); стрелка ОВ есть а; стрелка ОС есть bi.

— Точно! — ответил Радикс.

— А кроме того, это похоже на параллелограмм сил. Выходит, что Наклонная Стрелка есть сумма тех стрелок, которые на осях?

— Или?.. — важно спросил Мнимий.

Илюша молчал.

— Если, — сказал Мнимий, — Наклонная Стрелка является геометрической суммой осевых стрелок, то, следовательно, эти стрелки по отношению к Наклонной Стрелке суть…

— 398 —

— …ее слагаемые, — отвечал Илюша. — Пожалуй, лучше сказать: ее составляющие.

— Вот это да! — отвечал Мнимий. — Так и запишем. Итак, каждый комплексный человечек может быть рассматриваем как сумма вещественной составляющей и мнимой, что нам давно известно из формулы:

a + bi

А теперь вы видите, как это можно изобразить геометрически.

Далее мы попросим нашего друга комплексного Вектора уменьшиться так, чтобы он был ростом в одну единицу.

Вектор-Наклонная-Стрелка немедленно сделался покороче.

— Как раз! — сказал Мнимий. — Ровно единица!

Осевые стрелки тоже сделались соответственно короче.

— Ну-с, — сказал Мнимий Илюше, — вы ничего не замечаете?

— Не знаю, — отвечал Илюша.

Тогда Вектор-Наклонная-Стрелка быстро повернулся против часовой стрелки, и кончик его туфелек начертил круг.

— А теперь? — спросил Мнимий.

Картина перед Илюшей несколько изменилась. Линии осей, уходившие за черту круга, исчезли. Все линии стали очень тоненькими, исключая проекцию Вектора-Наклонной-Стрелки на действительную ось и того перпендикуляра, который опускался от конца Вектора на конец этой проекции. Эти линии, наоборот, стали очень толстыми и черными.

— Не узнаете? — спросил Мнимий.

— Узнаю как будто, — сказал Илюша. — Это синус и косинус.

— Ага! — вскричал Мнимий. — Они самые. Ну-ка, прикиньте, что бы это могло значить алгебраически? Как выходит, что проекции единичного вектора суть синус и косинус?

— Потому, вероятно, — отвечал Илюша, — что синус в квадрате и косинус в квадрате, как катеты прямоугольного треугольника, равны гипотенузе в квадрате, а она у нас равна единице. Радиус ведь и есть единица. Вектор в данном случае и есть радиус.

— Ну что ж, — отвечал Мнимий, — вы правы. Но давайте разберемся в этом. Если нам дан на комплексной плоскости, которую вы видите сейчас перед собой, некий комплексный вектор, то ответьте, чем он, по-вашему, отличается от обыкновенных чисел?

— Он как сила в механике, — ответил Илюша, — имеет направление.

— 399 —

— Мне очень нравится ваш ответ, — вежливо отвечал Мнимий, — но давайте посмотрим еще на наш чертеж и разберем все подробней. Итак, значит, длину вектора мы…

— … определяем по теореме Пифагора, — подхватил Илюша.

— Любого вектора?

— Любого.

— Напишите! — сказал Мнимий.

Илюша написал:

r = √(a2 + b2).

Что это за линии OB и BA?

Кто скажет?

— Отменно! — произнес Мним. — Далее, если вектор наклонен по отношению к положительному направлению вещественной оси под углом φ, то как бы вы определили проекции вектора на оси, исходя из длины его и данного угла?

— По-моему, надо вот как написать:

а = r cos φ;

b = r sin φ.

— Справедливо! А что если нам теперь взять наш вектор в обычной форме:

a + bi

и подставить в его выражение новые значения для а и b?

а + bi = r cos φ + (r sin φ) i = r (cos φ + i sin φ).

— Теперь, — заявил Мнимий, — получилась так называемая тригонометрическая форма комплексного числа.

Ясно, что множитель перед скобкой есть длина вектора, или его модуль. А что же стоит в скобках?

— 400 —

Угол с положительным направлением вещественной оси определяет направление вектора.

— Мне кажется, что это тоже вектор.

— Справедливо. А длина его?

— Равна единице.

— Точно. Потому он и называется единичным вектором.

А величина, определяющая направление вектора, именуется его аргументом. Очевидно, любой вектор можно изобразить, выбрав соответствующий аргумент и приличный случаю модуль.

— Ясно, — отвечал Илюша. — Умножил на сколько надо и получил из единичного вектора такой, какой требуется.

— Точно, правильно, прекрасно! — произнес Радикс.

— В таком случае давайте рассмотрим, что будет с единичным вектором, если его умножить на самого себя:

(cos φ + i sin φ) (cos φ + i sin φ) = (cos2 φ sin2 φ) + 2i sinφ · cos φ.

— Ну, Илюша, — сказал Радикс, — глянь-ка повнимательней: тебе эта формула ничего не говорит?

Илюша пожал плечами.

— Тогда вот что, — сказал Мнимий Радиксович. — Может быть, в дальнейшем вы заглянете в учебник тригонометрии и узнаете, что разность квадратов косинуса и синуса есть косинус двойного угла φ, то есть угла, равного двум φ. А удвоенное произведение косинуса φ на синус φ есть аналогично синус угла двух φ. Если записать, то выйдет:

cos 2φ = cos2φ — sin2φ

sin 2φ = 2 sin φ · cos φ.

Минуя некоторые длинные выкладки, сделаем такое общее заключение: возвести единичный вектор в степень n значит увеличить его угол в n раз. Вот что означает геометрически возведение единичного вектора в степень.

— Как будто, — сказал очень нерешительно Илюша, — я это где-то даже видел.

— Весьма вероятно! — подхватил Мнимий. — И увидите,

— 401 —

наверно, еще не раз. Это ведь не так трудно проверить. Допустим, что наш единичный вектор наклонен к положительному направлению действительной оси под углом в сорок пять градусов. Тогда его косинус, то есть его проекция на действительную ось, равен…

— … половине корня из двух. Такой же и синус будет.

— Давайте умножим такой вектор на самого себя.

Илюша взял мел и перемножил

— Получилось одно i, — сказал Илюша в некотором недоумении. — Что это за вектор, у которого только одно i осталось?

Затем Илюша внимательно посмотрел на чертеж.

— А-а! — сказал он. — Понял! Это единичный вектор, направленный прямо по мнимой оси. Единичный он потому, что около i стоит множителем единица. А так как мнимая ось перпендикулярна к действительной, то, значит, этот вектор образует с ней угол в девяносто градусов. И выходит, что действительно угол удвоился.

— А вектор?

— А вектор повернулся против часовой стрелки на сорок пять градусов. А если еще раз умножить? Можно, я попробую?

— Сделайте ваше одолжение! — отвечал Мнимий.

Илюша умножил еще раз. Вышло:

— Что-то я не пойму, — сказал Илюша.

Но на чертеже он увидел, что вектор повернулся теперь на 135° по отношению к положительному направлению действительной оси, и, следовательно, к 90° прибавилось еще 45°.

OA = 1;

AB = sin α;

OB = cos α

— А ведь верно! — сказал Илюша.

Перейти на страницу:

Сергей Бобров читать все книги автора по порядку

Сергей Бобров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


ВОЛШЕБНЫЙ ДВУРОГ отзывы

Отзывы читателей о книге ВОЛШЕБНЫЙ ДВУРОГ, автор: Сергей Бобров. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*