Александр Гротендик - УРОЖАИ И ПОСЕВЫ
56
56(Предназначается для читателя-математика.) Когда я говорю «довести до конца эту скромную идею», то имею в виду идею этальных когомологии, как подход к гипотезам Вейля. Именно под этим лозунгом произошло открытие мною понятия ситуса в 1958 г. и дальнейшее развитие его (или очень близкого к нему понятия топоса) и формализма этальных когомологии под моим руководством (с помощью нескольких сотрудников, о которых я скажу в свое время) между 1962 и 1966 годами.
57
57(Предназначено для математика.) Гипотезы Вейля находятся в зависимости от предположений арифметической природы: именно, рассматриваемые в них многообразия должны быть определены над конечным полем. С точки зрения когомологического формализма это приводит к тому, что особое место получает эндоморфизм Фробениуса, соответствующий данной ситуации. При моем подходе ключевые свойства (типа «обобщенной теоремы об индексе») связаны с произвольными алгебраическими соответствиями и не требуют никаких ограничений арифметической природы над основным полем, предварительно заданным.
58
58При этом после моего ухода в 1970 г. весьма четко наметилось движение реакции, которое вылилось в ситуацию относительного застоя, о которой я не раз упомяну при случае на страницах «РС».
59
59«Обыкновенные» значит здесь: «определенные над полем комплексных чисел». Теория Ходжа (называемая также гармоническими интегралами) была мощнейшей из известных когомологических теорий в контексте комплексных алгебраических многообразий.
60
60Эта тема - наиболее глубокая по крайней мере за весь «открытый» период моей математической деятельности, между 1950 и 1969 годами, то есть вплоть до того момента, как я оставил математическую сцену. Я считаю тему анабелевой алгебраической геометрии и теорию Галуа-Тейхмюллера, получившие развитие, начиная с 1977 г., сравнимыми с ней по значению.
61
61 (Предназначается для читателя, занимающегося алгебраической геометрией.)
62
62 (Предназначается для читателя-математика.) Эти теории соответствуют, по порядку, когомологиям Бетти (определенным с трансцендентной точки зрения, с помощью вложения основного поля в поле комплексных чисел), когомологиям Ходжа (определенным Серром) и когомологиям де Рама (определенным мной); две последние относятся еще к пятидесятым годам (а теория Бетти - к предыдущему столетию).
63
63(Предназначается для читателя-математика.) Например, если / - эндоморфизм алгебраического многообразия X, индуцирующий эндоморфизм пространства когомологии Нг(Х), «характеристический многочлен» последнего должен быть многочленом с целыми коэффициентами, не зависящими от выбора конкретной когомологической теории (например, /-адической для различных /). То же верно для общих алгебраических соответствий, если X собственное и гладкое. Печальная истина (дающая представление о плачевном состоянии заброшенности когомологической теории алгебраических многообразий в характеристике р › О, считая с моего ухода) состоит в том, что это не доказано по сей день даже для частного случая, когда X есть
64
64(Предназначается для читателя-математика.) Другой способ представить себе категорию мотивов над полем к - рассмотреть ее как что-то вроде «обертывающей абелевой категории» для категории отделимых схем конечного типа над к. Мотив, соответствующий такой схеме X (или «мотивные когомологии X», которые я обозначаю Н^о1.(Х)) оказывается, таким образом, некоей абелианизированной «аватарой» X. Самое важное здесь, что совершенно так же, как алгебраическое многообразие X поддается «непрерывной деформации» (его класс изоморфизма зависит от непрерывных «параметров», или «модулей»), мотив, соответствующий X, или, более общо, «переменный» мотив, также поддается непрерывной деформации. Этот аспект мо-тивных когомологии находится в разительном контрасте с тем, что происходит со всеми классическими когомологическими инвариантами, в том числе /-адическими, за единственным исключением когомологии Ходжа комплексных алгебраических многообразий.
65
65Я излагал свою точку зрения на мотивы тем, кто желал выслушать, на протяжении всех этих лет, не взяв на себя труда что бы то ни было опубликовать на этот предмет (в других насущных вопросах не было недостатка). Позже это дало возможность кое-каким из моих учеников «заимствовать» с пущей непринужденностью, под трогательным присмотром всех разом моих старинных друзей, прекрасно знакомых с истинным положением дел. (См. последующую сноску.)
66
66В действительности, эта тема была эксгумирована в 1982 г. (годом позже, чем тема кристаллов) под тем же названием на этот раз (и в более узкой форме: дело ограничивалось случаем основного поля характеристики нуль), только имя задумавшего ее работника не произносилось. Это один пример из множества прочих, когда тема или понятие, похороненные тут же после моего ухода как безумные гротенди-ческие причуды, бывали извлечены из могил одна за другой некоторыми из моих учеников в ходе десяти-пятнадцати последующих лет со скромным достоинством и (нужно ли уточнять) без упоминания работника…
67
67macho (исп.) - мужчина, мужской - прим. перев.
68
68То, что я говорю здесь о математической работе, столь же справедливо для труда «медитации» (о котором в том или иной мере говорится на всем протяжении «РС»). Я уверен и в том, что нечто подобное возникает на пути всякого труда открытия, включая работу художника (скажем, поэта или писателя). Два «склона», которые я пытаюсь здесь описать, можно рассматривать и по-другому: первый связан с выражением готовых идей и возникающими при этом потребностями технического толка; на второй же переходишь, чтобы принимать сигнал (то есть ощущения, впечатления всякого рода). Напряженное внимание, преобразуя такой сигнал, делает его источником вдохновения. Оба аспекта присутствуют в каждый момент работы; преобладает, по очереди, то один, то другой.
69
69Это не значит, что в моей работе не хватает так называемых «великих теорем». Их довольно, включая те, которые впервые разрешали давно висевшие в воздухе (не мной поставленные) вопросы. (Я сделал обзор некоторых из них в сноске на стр. 554 - в примечании «Море, которое вздымается…» (PC III, п° 122).) Но, как я подчеркнул в начале этой «прогулки» (на этапе «Точки зрения и видение, §6), эти теоремы обретают для меня свой полный смысл лишь в щедром на толкования контексте единой темы, порожденной одной из таких «плодотворных идей». Тогда уже их доказательство легко вытекает из самой природы, из «глубины» несущей их темы. Так волны в реке свободно рождаются от самой водяной глуби и несутся вперед плавно, без усилий. Я говорю о том же самом, используя иные образы, в примечании «Море, которое вздымается…» (см. выше).
70
70Сначала, приступая к Эпилогу, я собирался включить в него сжатый обзор некоторых из этих «глубоких изменений» и вкратце осветить эту «непрерывность по существу», как она мне виделась. Все же я передумал, дабы «Прогулка» не затянулась чрезмерно - и так уж она куда длиннее, чем я ожидал. Предполагаю вернуться к этому вопросу в Исторических Комментариях, намеченных для четвертого тома «РС», обращаясь на этот раз к читателю-математику (что должно полностью изменить задачи изложения).
71
71 Это утверждение (некоторым оно представляется чересчур категоричным) вполне выверено здравым смыслом. Оно ни более, ни менее соответствует действительности, чем утверждение (к нему я еще вернусь ниже) о том, что «ньютоновская модель» механики (земной или небесной) была «при смерти» в начале этого века, когда Эйнштейн явился ей на выручку. Несомненно, что еще и теперь для большей части «повседневных» ситуаций в физике модель Ньютона совершенно адекватна, и было бы нелепо (ввиду допустимой степени точности измерений) отправляться на поиски релятивистской модели. Точно так же, во многих ситуациях в математике привычные старинные понятия «пространства» и «многообразия» остаются абсолютно адекватными, так что нет нужды в погоне за нильпотентными элементами, топосами или «ручными структурами». Но и в том и в другом случае для растущего числа контекстов, участвующих в современных исследованиях, самые «обычные» ситуации не умещаются в рамках старинного восприятия.
72
72 (Предназначено для математика.) К этому «потомству» я отношу, в частности, формальные схемы, стэки (орбиобразия, «пространства» модулей - устоявшегося