Kniga-Online.club
» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Читать бесплатно Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Без сомнения, именно из Handbuch и Харди, и Литлвуд заразились навязчивой идеей Гипотезы Римана. Первые плоды последовали в 1914 году, но не в виде совместной работы, хотя они и сотрудничали в то время, а в виде двух отдельных статей, каждая из которых сыграла значительную роль.

Статья Харди под названием Sur lez zéros de la fonction ζ(s) de Riemann[130] вышла в Comptes Rendus Парижской академии наук. В ней он доказал первый важный результат о распределении нетривиальных нулей.

Результат Харди 1914 года

Бесконечно много нетривиальных нулей дзета-функции удовлетворяют Гипотезе Римана (т.е. имеют вещественную часть одна вторая).

Хотя это и был значительный шаг вперед, для читателя важно понимать, что это не решило вопроса с Гипотезой. Имеется бесконечно много нетривиальных нулей; Харди доказал, что бесконечно много из них имеют вещественную часть одна вторая. Тем самым остаются открытыми три возможности.

• Бесконечно много нулей не имеют вещественную часть одна вторая.

• Лишь конечное число нулей не имеет вещественной части одна вторая.

• Нет нулей, вещественная часть которых не равна одной второй, — утверждение Гипотезы!

Чтобы провести аналогию, рассмотрим следующие утверждения о четных числах, превосходящих двойку, т.е. 4, 6, 8, 10, 12, …

• Бесконечно много этих чисел делится на 3; бесконечно много не делится.

• Бесконечно много из них больше чем 11; только четыре числа не больше.

• Бесконечно много из них представимы в виде суммы двух простых; нет таких, которые не представимы — гипотеза Гольдбаха (которая все еще не доказана на момент написания книги).

Статья Литлвуда, также опубликованная в Comptes Rendus Парижской академии наук в том же году, называлась Sur la distribution des nombres premiers. В ней доказан результат столь же тонкий и столь же замечательный, как результат Харди, хотя и относящийся к несколько другому направлению исследований в данной области. Обсуждение этого результата требует небольшой преамбулы.

VI.

Мы уже отмечали, что в начале XX века наблюдалось следующее общее направление мыслей по поводу Гипотезы Римана. Теорема о распределении простых чисел (ТРПЧ) была доказана. С математической точностью было установлено, что действительно π(x) ~ Li(x) — или, словами, что относительная разность между π(x) и Li(x) уменьшается до нуля по мере того, как x делается все больше и больше. Так что же тогда можно утверждать об этой разности — т.е. об остаточном члене? Именно при внимательном рассмотрении остаточного члена математики обратили свои взоры к Гипотезе Римана, поскольку в работе Римана 1859 года для остаточного члена было приведено точное выражение. Как будет показано в должном месте, это выражение включает в себя все нетривиальные нули дзета-функции, так что ключ к пониманию остаточного члена каким-то образом скрыт среди этих нулей.

Чтобы говорить более конкретно, я приведу некоторые реальные значения остаточного члена. В таблице 14.1 «абсолютн.» означает разность Li(x) − π(x), а «относит.» означает это же число, отнесенное к (т.е. деленное на) π(x).

Таблица 14.1.

Мы видим, что относительная ошибка, без сомнения, уменьшается, стремясь к нулю, как ей и предписывает ТРПЧ. Это происходит потому что, хотя абсолютная ошибка тоже растет, она делает это далеко не так быстро, как π(x).

Пытливый математический ум сейчас спросит: «А как именно ведут себя эти два числа?» Имеются ли правила, описывающие медленный рост абсолютной ошибки или стремление относительной ошибки к нулю? Другими словами, если выкинуть из таблицы 14.1 вторую и четвертую колонки и рассмотреть получившуюся двухколоночную таблицу как «моментальный снимок» некоторой функции (колонки аргумент-значение), то что это будет за функция? Можно ли для нее получить формулу с волнами, как это было сделано для π(x)?

Здесь-то на сцене и появляются нетривиальные нули дзета-функции. Они тесно связаны (способом, который мы рассмотрим ниже во всех математических подробностях) с остаточным членом.

Хотя в ТРПЧ говорится об относительной ошибке, исследования в этой области в большей степени имеют дело с абсолютной ошибкой. На самом деле неважно, какую из них рассматривать. Относительная ошибка есть просто абсолютная ошибка, деленная на π(x), так что в любой момент несложно перейти от одной к другой. Итак, можно ли получить какие-нибудь результаты об абсолютном остаточном члене Li(x) − π(x)?

VII.

Взглянув на рисунок 7.6 и таблицу 14.1, можно с достаточной уверенностью заключить, что абсолютная разность Li(x) − π(x) положительна и возрастает. Численные свидетельства в пользу этого так убедительны, что Гаусс в своих собственных исследованиях полагал, что всегда так и происходит. Весьма вероятно, что исследователи поначалу соглашались с тем, или, по крайней мере, чувствовали уверенность в том, что π(x) всегда меньше чем Li(x). (Относительно мнения Римана по этому поводу ясности нет.) Поэтому статья Литлвуда 1914 года оказалась сенсацией, ибо в ней было установлено, что, напротив, существуют такие числа x, что π(x) больше чем Li(x). На самом деле доказано было гораздо большее.

Результат Литлвуда 1914 года

Разность Li(x) − π(x) изменяется от положительной к отрицательной и обратно бесконечно много раз.

Если учесть, что π(x) меньше, чем Li(x), для всех x, до которых смогли добраться даже самые мощные компьютеры, то где же находится первая точка перехода, первое «литлвудово нарушение», когда π(x) становится равной, а затем и превосходит Li(x)?

В подобных ситуациях математики отправляются на поиски того, что они называют верхней границей, — такого числа N, для которого можно доказать, что, каким бы ни был точный ответ на данный вопрос, он во всяком случае будет меньше, чем N. Установленные верхние границы такого рода нередко оказываются много больше, чем реальный ответ[131].

Так и обстояло дело с первой установленной верхней границей литлвудова нарушения. В 1933 году студент Литлвуда Сэмюель Скьюз показал, что если Гипотеза Римана верна, то переход должен наступать раньше, чем , что представляет собой число из примерно 10десять миллиардов триллионов триллионов цифр. Это не само число — это число цифр в том числе. (Для сравнения заметим, что общее количество всех атомов во Вселенной оценивается числом из примерно восьмидесяти цифр.) Этот монстр получил известность как «число Скьюза» — самое большое число, которое когда-либо до того следовало из математического доказательства.[132]

В 1955 году Скьюз улучшил свой результат, на этот раз даже не предполагая справедливости Гипотезы Римана, и оказалось, что новое число содержит 10одна тысяча цифр. В 1966 году Шерман Леман сумел понизить верхнюю границу до куда более разумного (по крайней мере, позволяющего себя записать) числа 1,165×101165 (числа, другими словами, из каких-то 1166 цифр), а потом еще сильнее, до 6,658×10370.

На момент написания книги (середина 2002 года) лучшее достижение принадлежит Картеру Бейсу и Ричарду Хадсону, которые также исходили из теоремы Лемана.[133] Они показали, что имеются литлвудовы нарушения в окрестности числа 1,39822×10316, а также привели некоторые аргументы в пользу того, что это нарушение может оказаться первым. (Статья Бейса и Хадсона оставляет открытой маленькую лазейку для существования нарушений на более малых высотах, возможно, даже на столь низкой высоте, как 10176. Они также установили существование грандиозной зоны нарушений вблизи числа 1,617×109608.)

VIII.

Колебания остаточного члена Li(x) − π(x) от положительных к отрицательным значениям и затем обратно происходящем не менее в пределах вполне определенных ограничений. Иначе не выполнялась бы ТРПЧ. Некоторые соображения по поводу природы этих ограничений возникли еще в результате усилий, направленных на доказательство ТРПЧ. Де ля Валле Пуссен включил в свое доказательство ТРПЧ некоторую оценку для функции, выражающей это ограничение. Пять лет спустя шведский математик Хельге фон Кох[134] доказал следующий ключевой результат, который я сформулирую в его современной записи.

Результат фон Коха 1901 года

Если Гипотеза Римана верна, то

π(x) = Li(x) + Ο(√x∙ln x).

Перейти на страницу:

Джон Дербишир читать все книги автора по порядку

Джон Дербишир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы

Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Джон Дербишир. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*