Kniga-Online.club
» » » » Энрике Грасиан - Мир математики. т.3. Простые числа. Долгая дорога к бесконечности

Энрике Грасиан - Мир математики. т.3. Простые числа. Долгая дорога к бесконечности

Читать бесплатно Энрике Грасиан - Мир математики. т.3. Простые числа. Долгая дорога к бесконечности. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Труды группы Бурбаки хорошо документированы, потому что этот математический коллектив существовал совсем недавно. Но то же самое нельзя сказать о других школах древности, таких как школы Пифагора и Евклида: их работы сегодня приписываются одному человеку. Правда, многие полагают столь же вероятным, что эти труды были результатом сотрудничества нескольких человек.

* * *

ГЕНЕРАЛ-МАТЕМАТИК

Откуда взялся псевдоним «Бурбаки»? По версии одного из самых выдающихся членов группы, Андре Вейля, в его студенческие годы произошел такой забавный случай. Как-то раз Картан и Вейль посетили лекцию, которую читал странного вида математик с непроизносимым скандинавским именем и с неопределенным акцентом. Он рассказал об удивительной и невероятной теореме Бурбаки, автором которой был французский генерал Шарль Дени Бурбаки (1816–1897), знаменитый герой франко-прусской войны. Лекция оказалась шуткой другого студента, Рауля Хасона, но Картана и Вейля вдохновило имя генерала: греческое происхождение имени делало его идеальным псевдонимом, под которым можно было опубликовать «евклидову реконструкцию» математики. Так Бурбаки и стал великим математиком.

Генерал Дени Бурбаки, вдохновлявший патриотов и математиков.

* * *

Информационные центры

Замечательный факт состоит в том, что достижения в области научного знания, как в целом, так и в математике, никогда не зависят лишь от одного человека. Это правда, что некоторые люди совершают великие открытия, но они сами являются продуктом математического сообщества. Для нового открытия также необходимо, чтобы существовали журналы, читались лекции, проводились конференции, на которых может быть получена новая информация и установлены связи между учеными. В настоящее время, конечно, обмен информацией достиг беспрецедентного пика эффективности. Благодаря общению через интернет научное открытие оказывается в пределах досягаемости каждого, кто только пожелает получить к нему доступ. Однако потребность в сохранении информации (чтобы ею могли воспользоваться другие) существовала во все времена: это одна из культурных связей, объединяющих общество. В этом смысле простые числа являются необычным предметом исследования. Еще на заре истории они привлекали внимание исследователей и продолжают это делать до сих пор. Проследив историю этих исследований, мы не только получим информацию об их математической природе, но и сможем развивать такие точки соприкосновения, которые с использованием современной терминологии можно было бы назвать «информационными центрами». Александрийская библиотека является классическим примером одного из них.

Александрия

Птолемей I, известный также как Сотер («Спаситель»), был первым правителем Александрии. Привлекая лучших архитекторов мира, город превратился в архитектурное чудо. Длинная дамба соединила город с островом Фарос, на котором был построен маяк, указывающий путь средиземноморским морякам в течение тысяч лет. Затем была создана библиотека, слава которой сохраняется на протяжении всей истории человечества. Маяк и библиотека сделали Александрию одним из самых важных информационных центров древнего мира; этой цели Птолемей хотел добиться любой ценой. Его первым шагом было возвращение из ссылки тирана Деметрия, которого Кассандр, один из трех наследников Александра Великого, назначил правителем Афин. Именно Деметрий поддерживал работу лицея, основанного Аристотелем. Несмотря на политическую деятельность, истинным призванием Деметрия была наука, и поэтому он был рад получить приглашение Птолемея основать библиотеку в Александрии, в которой были бы собраны и систематизированы все знания цивилизованного мира.

Гавань Александрии состояла из небольших островов, защищенных дамбами, с единственным выходом к морю через большой канал, по которому могли входить и выходить корабли. Это надежно защищало гавань от атак с моря. Одним из самых важных районов был Брухеион, расположенный прямо в центре города, где находились наиболее важные общественные здания, в том числе музей, посвященный музам музыки и науки, то есть мелодиям, ритмам и цифрам. Когда Деметрий узнал, что этот центр знаний находится под покровительством одного из самых могущественных правителей в мире, он, не колеблясь, согласился стать его директором.

Первым делом он попросил у Афин рукописи наиболее выдающихся мыслителей и писателей Древней Эллады. Он приказал скопировать рукописи, вернул Афинам копии и оставил на хранение оригиналы вместе с текстами, которые Птолемей захватил в качестве трофеев во время военных кампаний.

Такой метод пополнения библиотеки оказался весьма эффективным, хотя и довольно неортодоксальным: все оригинальные документы, с которыми суда входили в гавань Александрии, реквизировались, копировались, оригиналы помещались в библиотеку, а копии возвращались владельцам. Именно так возникла так называемая «корабельная библиотека». Но вскоре богатые купцы Средиземноморья узнали об этой хитрости и отказались привозить рукописи. Тогда Деметрий сделал торговцам такое предложение: если они хотят торговать на рынках в порту Александрии, они должны привозить из своих городов рукописи в качестве пропуска в порт Александрии. Не имело значения, какие вопросы рассматривались в этих документах: техника, философия, искусство, математика или музыка, лишь бы они способствовали накоплению знаний. Идея заключалась в том, что с текстов будут сняты копии: оригиналы останутся в библиотеке, а копии будут возвращены торговцам. Эти копии возвращались владельцам в оригинальных переплетах, так что большинство торговцев даже не замечали разницы, а если и замечали, многих из них это не слишком беспокоило. Известно, что в то время Александрия содержала крупнейший в мире штат переписчиков книг.

Но Александрия была не только центром хранения информации: город стал местом, где информация обрабатывалась. Александрия быстро привлекла многих специалистов по всем дисциплинам, которые давали лекции и делились знаниями с другими учеными. Для этих целей строились учебные комнаты, жилье, галереи и парки.

Логично предположить, что появились научные школы, в том числе школа Евклида, которая, как и группа Бурбаки два тысячелетия спустя, собирала математические знания того времени и превратилась в учение, или, другими словами, в систему математических понятий и методов, достижения которой актуальны и сегодня.

Заметим, что две тысячи лет спустя в современной средней школе преподается та же геометрия, которая родилась в классных комнатах и садах древней Александрии.

Александрия была самым важным информационным центром древнего мира. На рисунке сверху: гравюра, изображающая ученых во время работы в знаменитой библиотеке. Внизу: римские монеты с изображением маяка на острове Фарос, еще одного чуда Александрии.

Большие пробелы

Одной из первых особенностей простых чисел, которая привлекла внимание древних математиков, было отсутствие правила, с помощью которого можно было бы предсказать их появление в последовательности натуральных чисел. Более того, даже их непоявление так же непредсказуемо. Они могут располагаться достаточно близко друг к другу или, наоборот, очень далеко друг от друга. Например, если взглянуть на простые числа из первой сотни натуральных чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

становится понятно, что первые восемь простых чисел находятся в первых двух десятках, и ни одно не встречается между 89 и 97.

Ряд простых чисел второй сотни, между 100 и 200:

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199

имеет большие пробелы: например, девять составных (не простых) чисел между 182 И 190.

Поэтому возникает вопрос: как такое возможно, что существуют очень большие пробелы, например, 50 000 идущих подряд чисел, среди которых нет ни одного простого числа?

Множество простых чисел достаточно большое, чтобы в нем могли встретиться сколь угодно длинные последовательности чисел, не содержащие ни одного простого числа. Этот вывод не просто гипотеза, его можно легко доказать.

Рассмотрим произведение первых четырех натуральных чисел:

1 х 2 х 3 х 4.

Мы можем быть уверены, что число 1 х 2 х З х 4 + 2 не является простым, так как оно делится на 2. Это можно сразу проверить: 1 х 2 х З х 4 + 2 = 26, и при делении на 2 мы получаем 13.

Но нам не нужно выполнять все вычисления, чтобы проверить делимость на два, так как оба слагаемых содержат множитель 2.

По той же причине очевидно, что число 1 х 2 х З х 4 + 3 = 27 не является простым, так как делится на 3; число 1 х 2 х З х 4 + 4 = 28 не является простым, так как делится на 4.

Перейти на страницу:

Энрике Грасиан читать все книги автора по порядку

Энрике Грасиан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Мир математики. т.3. Простые числа. Долгая дорога к бесконечности отзывы

Отзывы читателей о книге Мир математики. т.3. Простые числа. Долгая дорога к бесконечности, автор: Энрике Грасиан. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*