Kniga-Online.club
» » » » Морис Клайн - Математика. Утрата определенности.

Морис Клайн - Математика. Утрата определенности.

Читать бесплатно Морис Клайн - Математика. Утрата определенности.. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Несколько иной подход к математическому анализу предложил Лейбниц (см. [141]). По его мнению, величины, обозначенные нами h и k (Лейбниц обозначал их символами dx и dy), убывая, достигают «исчезающе малых», или «бесконечно малых», значений. На этой стадии h и k отличны от нуля, но меньше любого заданного числа. Следовательно, любыми степенями h, например h2 или h3, заведомо можно пренебречь. Получающееся при этом отношение h/k и есть та самая величина, которую требовалось найти, т.е. производная, которую Лейбниц обозначил dy/dx.

Геометрический смысл величин h и k по Лейбницу заключался в следующем. Пусть P и Q — «бесконечно близкие» точки на кривой. Тогда dx — разность их абсцисс, a dy — разность их ординат (рис. 6.4). Кроме того, касательная к кривой в точке T совпадает с дугой PQ. Следовательно, отношение dy/dx задает угол наклона касательной. Треугольник PQR, называемый характеристическим, не являлся изобретением Лейбница: им пользовались Паскаль и Барроу, труды которых были известны Лейбницу. Лейбниц считал, что треугольник PQR подобен треугольнику STU, — и пользовался этим подобием для доказательства некоторых утверждений относительно dy/dx.

Рис. 6.4. Характеристический треугольник PQR.

Лейбниц широко использовал понятие интеграла и независимо пришел к идее суммирования элементарных прямоугольников, на которые разбивается криволинейная трапеция [ср. (7)]. Но переход от суммы конечного числа прямоугольников к сумме бесконечно большого числа прямоугольников был не вполне понятен. По утверждению Лейбница, сумма элементарных прямоугольников превращалась из конечной в бесконечную, когда ширина h прямоугольников становилась «бесконечно малой». Для бесконечной суммы бесконечно малых величин — интеграла — Лейбниц ввел специальное обозначение ∫ydx. Он научился вычислять такие интегралы и независимо открыл основную теорему интегрального исчисления, утверждающую, что вычисление интеграла представляет собой операцию, обратную нахождению производной (антидифференцирование). После примерно двенадцати лет упорной работы над своим вариантом математического анализа Лейбниц опубликовал первую работу о новом исчислении в журнале Acta eruditorum («Журнал ученых») за 1684 г. Наиболее выразительный отзыв на эту работу Лейбница дали его друзья, братья Якоб и Иоганн Бернулли, заявив, что это «не столько загадка, сколько объяснение».

Идеям Ньютона и Лейбница недоставало ясности, и критики не замедлили воспользоваться этим. Ньютон не снисходил до ответа на критические замечания, тогда как Лейбниц считал своим долгом ответить на возражения критиков. Его попытки объяснить в частной переписке свое понимание бесконечно малых величин столь многочисленны, что для подробного разбора их понадобилось бы немало страниц. В статье, опубликованной в томе Acta eruditorum за 1689 г., Лейбниц утверждал, что бесконечно малые — не действительные, а некие фиктивные числа. Но эти фиктивные, или мнимые, числа подчиняются тем же правилам арифметики, что и обычные числа.

В той же статье Лейбниц, исходя из геометрических соображений, доказывал, что высший дифференциал (бесконечно малая более высокого порядка, чем первый), например (dx)2, относится к низшему дифференциалу dx, как точка к прямой, и что dx относится к x, как точка к земному шару или радиус Земли к радиусу небесной сферы. Отношение двух бесконечно малых Лейбниц мыслил как отношение двух неопределенностей или бесконечно малых величин, которое, однако, можно выразить через конечные величины. Например, геометрически отношение dy к dx есть не что иное, как отношение ординаты к подкасательной (TU к SU на рис. 6.4).

Одним из критиков, выступивших против Лейбница, был Бернгардт Нювентидт (1654-1718). Ответ Лейбница ему был опубликован в Acta eruditorum за 1695 г. Лейбниц обрушился на ревнителя математической строгости, справедливо заметив, что чрезмерная скрупулезность не должна отвращать нас от плодов нового открытия. Лейбниц утверждал, что его метод отличается от метода Архимеда только терминологией, и считал, что избранная им терминология в большей мере отвечает искусству совершать открытия. Термины «бесконечная» и «бесконечно малая» относятся к величинам, которые можно считать сколь угодно большими или сколь угодно малыми, когда требуется показать, что совершаемая ошибка меньше «наперед заданного числа» (т.е. что ошибки нет). Предельные величины, т.е. все эти «действительные бесконечности» и «бесконечно малые», можно использовать как удобный рабочий инструмент в вычислениях, подобно тому как алгебраисты с превеликой пользой используют мнимые корни. (Напомним, что во времена Лейбница мнимые корни имели весьма шаткий статус.)

В письме к Валлису, написанном в 1699 г., Лейбниц дал несколько иное объяснение бесконечно малых:

Бесконечно малые величины полезно рассматривать так, чтобы, когда требуется найти их отношение, их нельзя было считать нулем, но чтобы в то же время ими можно было пренебречь по сравнению с неизмеримо большими величинами. Так, в x + dx величина dx пренебрежимо мала. Иное дело, если нам требуется найти разность между x + dx и x. Точно так же не следует допускать, чтобы xdx и dxdx стояли рядом. Если необходимо продифференцировать [найти производную] ху, то мы пишем: (x + dx)(y + dy) − xy = xdy + ydx + dxdy. Но член dxdy неизмеримо мал по сравнению с xdy + ydx, и его надлежит отбросить. Итак, в рассмотренном нами частном случае ошибка меньше любой конечной величины.

Так Лейбниц отстаивал законность математических понятий, используемых в созданном им варианте анализа. Поскольку приводимые Лейбницем доводы не удовлетворяли его критиков, он сформулировал философский принцип, известный под названием принципа непрерывности и практически не отличающийся от того, которым пользовался Кеплер. Этот принцип Лейбниц сформулировал с самого начала своей работы по созданию анализа, изложив его в письме Герману Конрингу от 19 марта 1678 г.: «Если переменная на всех промежуточных этапах обладает некоторым свойством, то и ее предел будет обладать тем же свойством».

В письме к Пьеру Бейлю, написанном в 1687 г., Лейбниц сформулировал свой принцип более полно: «В любом переходе, завершающемся неким пределом, допустимо использовать общее рассуждение, которое может включить этот предел». Свой принцип Лейбниц применил к вычислению производной dy/dx для параболы y = x2. Получив dy/dx = 2x + dx, Лейбниц заметил: «Согласно нашему постулату, допустимо включать в общее рассуждение и тот случай (рис. 6.5), когда ордината x2y2 все более приближается к фиксированной ординате x1y1, пока наконец не совпадет с ней. Ясно, что тогда dx становится равным нулю и должен быть отброшен…» Лейбниц умолчал о том, какие значения следует придавать dx и dy, входящим в левую часть равенства dy/dx = 2x + dx, когда dx обращается в нуль.

Рис. 6.5. Переход к пределу х2→x1 Лейбницу.

Абсолютно равные величины, говорил Лейбниц, имеют, разумеется, разность абсолютно ничтожную.

Тем не менее можно вообразить переход или одно из обращений в нуль, при котором точное равенство или состояние покоя еще не наступило, но достигнуто такое состояние, в котором разность меньше любой заданной величины. В таком состоянии некоторая разность — какая-то скорость, какой-то угол — еще остается, но в каждом случае она бесконечно мала…

Можно ли строго или метафизически обосновать такое состояние мгновенного перехода от неравенства или равенства и сколь законны соображения, использующие бесконечно большие протяженности, продолжающие неограниченно возрастать, или бесконечно малые протяженности, — вопросы, которые мне, по-видимому, придется оставить открытыми…

Вполне достаточно, если каждый раз, когда речь заходит о бесконечно больших (или, точнее, о неограниченных) или о бесконечно малых (т.е. о самых малых из известных нам) величинах, мы условимся понимать, что имеем в виду величины бесконечно большие или бесконечно малые, т.е. сколь угодно большие или сколь угодно малые, вследствие чего допускаемая ошибка может быть меньше заранее заданной величины.

Перейти на страницу:

Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*