Kniga-Online.club
» » » » Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев

Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев

Читать бесплатно Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев. Жанр: Математика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
правда, празднуют 28, а не 18 лет. Тост всегда такой: «Чтоб тебе дожить до следующего совершеннолетия». Но вроде как никому еще не удавалось.

Так, а в чём же загадка? Априори совершенными числами могут быть как четные числа, так и нечетные. Более того, все четные уже описаны.

Над этим потрудились Евклид и Эйлер. Первый обратил внимание на следующую изящную формулу: 2p-1(2p − 1) (произносится она весьма своеобразно: «два в степени (пэ минус один) умножить на [(два в степени пэ) минус один]»). Буква «пэ» означает некоторое простое число. Первый множитель можно раздробить на самые мелкие из возможных множители (равные двум). А второй множитель хотелось бы взять таким, чтобы его вообще нельзя было раздробить, то есть в виде простого числа. (Я думаю, Евклид рассуждал именно так. Если когда-нибудь повстречаюсь с ним, непременно спрошу его об этом.) Вот и высказал Евклид такую гипотезу:

Если число (2p-1) простое, то число 2p-1(2p−1) — совершенное.

И что вы думаете? Так оно и оказалось! А потом за дело взялся Эйлер и доказал теорему посложнее: любое четное совершенное число можно записать в таком виде. Чтобы вас немного «попугать», давайте проверим формулу Евклида при p = 13. Получается четное число 33550336. Странные цифры, правда? Кто не верит, что это число совершенное, проверьте.

А с нечетными не всё так хорошо. Когда я учился в матклассе, у нас были листочки с задачами. И вот на одном листочке была задача с тремя звездочками: «Докажите, что нечетных совершенных чисел не существует».

Я посидел дома денек, другой. Пришел в школу и говорю учителю: «Что-то… я не могу доказать, честно...» А он, мне в ответ: «А… Да, это никто не может доказать! Я на всякий случай дал. Вдруг кто-нибудь решит…»

Вот такая проблема! Существуют ли нечетные совершенные числа? Компьютеры пока перебирают варианты. Если компьютер найдет, то проблему снимут. А если не найдет, то надо доказывать, что их не существует. В конце этой темы я хочу задать задачу-шутку (а решение — не шутка): бывают ли совершенные числа, которые в десятичной системе записываются одними семерками?

Напоследок две решенные недавно задачи.

Возьмем много-много одинаковых шаров. Начнем приставлять их друг к другу с разных сторон (в пространстве).

Сколько одинаковых шаров можно приставить вплотную к одному шару такого же размера? Она называется задачей Ньютона. Ньютон очень долго переписывался с Д. Грегори. Ньютон был уверен, что можно приставить только 12 шаров, а Грегори утверждал, что 13. В результате доказали, что 13-й шар чуть-чуть не влезает. Ну, разумеется, возникает естественный вопрос, а в 4-мерном пространстве сколько шаров влезет? Задача решена в 2013 году нашим соотечественником О. Мусиным. Он еще жив и вполне себе в рабочем настроении. То есть в 4-мерном пространстве она решена, а в 5-мерном, кажется, еще нет.

А теперь, наконец, Гипотеза Пуанкаре.

Что мы знаем о нашем мире? Во-первых, что он 3-мерный. Во-вторых, у него нет края. Края в том смысле, в котором его воспринимает таракан, подползая к краю стола. Мир везде одинаковый. То есть таракан ползет по сфере или по бесконечной плоскости. А люди «ползают» по трехмерной сфере или по бесконечному пространству (а где именно — надо бы уточнить).

А еще наш мир ориентированный. То есть что бы вы ни делали в этом 3-мерном мире, ваша правая нога никогда не станет левой.

Исследования в области теоретической физики (так называемые уравнения космологии Фридмана и других ученых) не исключают того, что наш мир конечен. Можно даже представить себе, что сверхдалекие звезды, которые видны справа и слева от Земли — это одни и те же звезды. И, может быть, мы сможем увидеть на небе Землю, улетая от нее вертикально вверх, долго-долго летя и возвращаясь на эту же Землю с другой ее стороны! Это трудно себе представить, но такая гипотеза не противоречит современным научным данным.

Наше пространство, возможно, является искривленным, то есть служит примером нетривиального трехмерного многообразия. Может ли к нему быть применена гипотеза Пуанкаре, доказанная Перельманом? Вернемся к «двумерным мирам». Если я беру камеру от колеса (рис. 108), продеваю в него нитку и завязываю, то я никогда не смогу ее снять. А если я завяжу нитку на сфере, я сниму ее без проблем. Всё, что нам осталось предположить про наш мир, чтобы применить к нему гипотезу Пуанкаре, это принять на веру, что в нашей вселенной «трюк с завязыванием петли» не пройдет, и любую петлю можно стянуть. Описанное свойство поверхности — сферы, но не камеры! — носит название односвязности[26].

Рис. 108. Пусть наш Космос имеет форму «бублика», только не двумерного, а трехмерного, расположенного в пространстве более высокой размерности. Как бы могли подтвердить этот факт земные космонавты? По наличию «дыры» в этом бублике.

Так вот, если наш трехмерный мир конечен и односвязен, то мы попадаем в условия теоремы, ПуанкареПерельмана. И тогда он обязательно является 3-мерной сферической поверхностью 4-мерного пространства-шара.

Обычная сфера радиуса 1 задается уравнением: х2 + у2 + z2 = 1.

А 3-мерная того же радиуса вот так: х2 + у2 + z2 + k2 = 1. (Подумайте, почему координат на единицу больше, чем размерность!)

Раньше это была гипотеза Пуанкаре и относилась она только к топологии. Теперь — это теорема Пуанкаре — Перельмана. И теперь ее можно пытаться применять в космологии.

Часть II

«Знание геометрии артиллеристу и инженеру необходимо, а каждому, кто только чему-нибудь учиться хочет, нужно; сия наука есть истинное основание всем наукам в свете, она научает нас здраво разсуждать, верно заключать и неопровергаемо доказывать; она сохраняет нас от многих заблуждениев, ибо геометристу труднее какое-нибудь предложение доказать обманчивыми доводами, нежели философу.

Эвклидовы элементы суть основании сей несравненной науки — необходимо учащимся предлагать должно, и стараться, чтоб они их знали совершенно…»

Всеподданейший доклад генерал-фельдцейхмейстера графа П. И. Шувалова об учреждении при артиллерии шляхетного кадетского корпуса с классом военной науки (1757 г.)

Лекция 1

Евклид, нам нужно поговорить

А.С.: Сейчас мы рассмотрим несколько сюжетов. Некоторые мы разберем сразу, а некоторые оставим и потом к ним вернем-

Первый сюжет называется фотосъемка.

Давайте представим себе такую ситуацию: на прямой дороге расположено несколько контрольных пунктов (КП). Над этим отрезком дороги непрерывно

Перейти на страницу:

Алексей Владимирович Савватеев читать все книги автора по порядку

Алексей Владимирович Савватеев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Математика для гуманитариев. Живые лекции отзывы

Отзывы читателей о книге Математика для гуманитариев. Живые лекции, автор: Алексей Владимирович Савватеев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*