Kniga-Online.club
» » » » Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Читать бесплатно Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Ниже даны примеры применения функции simplify:

> simplify(4^(1/2)+3);

5

> simplify((х^у)^z+3^(3),power);

(хy)z + 27

> simplify(sin(х)^2+cos(х)^2,trig);

1

> e:=cos(х)^5+sin(х)^4+2*cos(х)^2-2*sin(х)^2-cos(2*х);

е: = cos(x)5 + sin(x)4 + 2cos(x)2 - 2sin(x)2 -cos(2x)

> simplify(e);

cos(x)5 + cos(x)4

> simplify(GAMMA(n+4)/GAMMA(n),GAMMA);

n(n+1)(n+2)(n+3)

> r:=RootOf(х^2-2=0,х):

> simplify(r^2,RootOf);

2

> simplify(1/r,RootOf);

½ RootOf(_Z² - 2)

> simplify(ln(x*y),power,symbolic);

ln(x) + ln(y)

> е:=(-5*b^2*а)^(1/2);

> simplify(e,radical);

> simplify(e,radical,symbolic);

> simplify(GAMMA(n+1)/n!);

1

Действие функции simplify существенно зависит от областей определения переменных. В следующем примере упрощение выражения не произошло, поскольку результат этой операции неоднозначен:

> restart;

> simplify(sqrt(х^4*у^2));

Однако, определив переменные как реальные или положительные, можно легко добиться желаемого упрощения:

> simplify(sqrt(х^4*у^2),assume=positive);

x² у

> simplify(sqrt(х^4*у^2),assume=real);

x²|y|

С помощью равенств можно задать свои правила преобразования, например:

> eq:=x^2+2*x*y+y^2;

eq:=х² +2ху + y²

> simplify(eq,{х=1));

y² + 2y + 1

> simplify(eq,{х^2=х*у, у^2=1});

3хy + 1

> simplify(eq,{х,у});

0

Обратите внимание на то, что указание в списке равенств только левой части равенства означает, что правая часть принимается равной нулю. Если функция simplify не способна выполнить упрощение выражения expr, то она просто его повторяет. Это сигнал к применению опций, уточняющих преобразования.

Сложность упрощаемых выражений зависит от объема ОЗУ и вида интерфейса. Очень большие выражения надо разбивать на подвыражения и работать с ними раздельно.

3.7.2. Расширение выражений — expand

Даже в жизни мы говорим: «не все так просто». Порою упрощенное выражение скрывает его особенности, знание которых является желательным. В этом случае можно говорить о полезности расширения или раскрытия выражения. Функция expand «расширяет» выражение expr и записывается в виде

expand(expr, expr1, expr2, ..., exprn)

где expr — расширяемое выражение, expr1, expr2, …, exprn — необязательные подвыражения — опции. Имеется также инертная форма данной функции — Ехpand(expr). Кроме того, возможно применение операторной конструкции frontend(expans,[expr]).

Функция expand раскладывает рациональные выражения на простые дроби, полиномы на полиномиальные разложения, она способна раскрыть многие математические функции, такие как sin, cos, tan, sinh, cosh, tanh, det, erf, exp, factorial, GAMMA, ln, max, min, Psi, binomial, sum, product, int, limit, bernoulli, euler, abs, signum, pochhammer, polylog, BesselJ, BesselY, BesselI, BesselK, AngerJ, Beta, Hankel, Kelvin, Struve, WeberE и функция piecewise. С помощью дополнительных аргументов expr1, expr2, …, exprn можно задать расширение отдельных фрагментов в expr.

Примеры применения функции expand приведены ниже (файл expand):

> expand((х+2)*(х+3)*(х+4));

x³ + 9х² + 26х + 24

> expand(sin(2*х));

2sin(x)cos(x)

> expand(sin(х+у));

sin(x)cos(y) +cos(x)sin(y)

> expand([(a+b)*(a-b),tan(2*x)]);

> expand((a+d)*(b+d)*(c+d));

abc + abd + adc + ad² + dbc + d²b + d²с = d³

> expand((х+1)*(y+1));

xy + х + у + 1

> expand((у+1),(х+1));

y + 1

> expand( (х+1) *(у+z));

ху + xz + y +z

> expand((х+1)*(y+z), х+1);

(х + 1)y +(х + 1)z

> frontend(expand,[(a+b)^3]);

а³ + 3a²b + 3аb²+b³

3.7.3. Разложение целых и рациональных чисел — ifactor

Для разложения целых или рациональных чисел на множители в виде простых чисел служит функция

ifactor(n)

или

ifactor(n,method)

где n — число, method — параметр, задающий метод разложения. Другая библиотечная функция, ifactors(n), возвращает результат разложения в форме вложенных списков (файл factor):

> ifactor(123456789);

(3)² (3803) (3607)

> ifactor(30!);

(2)26 (3)14 (5)7 (7)4 (11)2 (13)2 (17) (19) (23) (29)

> ifactor(12!/20!);

> ifactor(100/78);

> readlib(ifactors):

> ifactors(100/78);

[1,[[2, 1], [5, 2], [3,-1], [13,-1]]]

3.7.4. Разложение выражений (факторизация) — factor

Для алгебраических выражений функция факторизации записывается в вычисляемой и невычисляемой (инертной) формах:

factor(a)

Factor(a)

factor(a,K)

Factor(a,K)

Здесь а — полином с несколькими переменными, К — необязательное алгебраическое расширение. Для получения результата от инертной формы функции факторизации надо использовать функции вычисления evala или evalgf.

Главная цель факторизации — это нахождение максимального числа независимых сомножителей выражения, линейных по заданным переменным с коэффициентами наиболее простой формы. Ниже представлены примеры применения функции factor:

> factor(а^2+2*а*b+b^2);

(а+b)²

> factor(а^2-2*а*b-b^2);

а² - 2ab - b²

> p:=expand((х-1)*(х-2)*(х-3)*(х-4));

р: = х4 - 10х3 + 35х2 - 50х + 24

> factor(р);

(х-1)(х-2)(х-3)(х-4)

> factor(х^5-2,2^(1/5));

(х -2(1/5))(х4 + х32(1/5) + х22(2/5) + х22(3/5) + 24/5))

> alias(alpha=RootOf(х^2-2));

α

> factor(х^2-2,alpha);

(х + α)(х - α)

> factor(х^3-у^3);

(х - у)(х² + ху + y²)

> factor(х^3-у^3, (-2)^(1/2));

(x - y)(x² + ху + y²)

> factor(х^3-у^3, (-3)^(1/2));

> factor(х^3-3,complex);

(х+.7211247852 + 1.249024766I)(х+.7211247852 - 1.249024766I) (х - 1.442249570)

3.7.5. Комплектование по степеням — collect

Еще одна функция общего назначения — collect — служит для комплектования выражения expr по степеням указанного фрагмента х (в том числе множества либо списка). Она задается в одной из следующих форм:

collect(а, х)

collect(а, х, form, func)

Во второй форме этой функции дополнительно задаются параметры form (форма) и func (функция или процедура). Параметр form может иметь два значения: recursive (рекурсивная форма) и distributed (дистрибутивная форма). Параметр func позволяет задать имя функции, по которой будет идти комплектование expr. Примеры применения функции collect представлены ниже (файл collect):

> collect(х+х^3-2*х,х);

-x + x³

> collect(х+2*у^3+х+3+х^3*у,recursive, х);

х(2х + 2у³ + 3 + х³y)

> collect(х+2*у^3+х+3+х^3*у,distributive,у);

у(2х + 2y³ + 3 + х³y)

> f:=а*ехр(х)-ехр(х)*х-х;

f: = аех - еx - х

> collect(f,ехр(х));

(а - х)ех - х

> g:=int(х*(ехр(х)+ехр(-х)),х);

> collect(g,ехр(х));

> р:=х*у+а*х*у+у*х^2-а*у*х^2+х+а*х;

р:= ху + аху + уx² - аух² + х + ах

> collect(р,[х,у],recursive);

(1 - а)ух² + ((1 + а)у + 1 + а)х

> collect(р,[х,у],distributed);

(1 +а)х + (1 + а)ху + (1 - а)ух²

> f:=а^3*х^2-х+а^3+а;

f:= а³х² - х + а³ + а

> collect(f,х);

а³х² - х + а³ + а

> collect(f,х,factor);

а³х² - х + а(а² + 1)

> p:=y/x+2*z/x+x^(1/3)-у*х^(1/3);

> collect(р,х);

3.7.6. Работа с пакетом рациональных нормальных форм RationalNormalForms

В Maple входит пакет рациональных нормальных форм RationalNormalForms:

> with(RationalNormalForms);

[AreSimilar, IsHypergeometricTerm, MinimalRepresentation, PolynomialNormalForm, RationalCanonicalForm]

Этот пакет обеспечивает следующие возможности:

• конструирование полиномиальных нормальных форм рациональных функций;

• конструирование рациональных канонических форм для рациональных функций;

• конструирование минимальных представлений для гипергеометрических термов.

Ввиду очевидности названий функций этого пакета ограничимся примерами его применения (файл rnform):

> F := (n^2-2)*(3*n+3)!/((n+3)!*(2*n+5)!);

> IsHypergeometricTerm(F,n,'certificate');

true

> certificate;

> (z,r,s,u,v) := RationalCanonicalForm[1](certificate,n);

> MinimalRepresentation[1](F,n,k);

Глава 4

Перейти на страницу:

Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Maple 9.5/10 в математике, физике и образовании отзывы

Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*