Kniga-Online.club
» » » » Стивен Вайнберг - Мечты об окончательной теории

Стивен Вайнберг - Мечты об окончательной теории

Читать бесплатно Стивен Вайнберг - Мечты об окончательной теории. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Исаак Ньютон был очень встревожен тем, что законы природы, по-видимому, различают неподвижную и вращающуюся системы отсчета. Это тревожило физиков и в последующие столетия. В 1880-е гг. физик и философ из Вены Эрнст Мах указал на другую возможную интерпретацию этого явления. Мах подчеркнул, что есть еще кое-что, помимо центробежной силы, отличающее вращающуюся карусель от обычной лаборатории. С точки зрения астронома, находящегося на карусели, Солнце, звезды, галактики – короче говоря, вся материя во Вселенной кажется вращающейся вокруг зенита. Вы или я скажем, что это происходит, потому что вращается карусель, но астроном, выросший на карусели и, естественно, использующий ее как систему отсчета, будет настаивать, что вся остальная Вселенная вращается вокруг него. Мах задал вопрос, а нельзя ли рассматривать это великое кажущееся вращение материи как причину возникновения центробежной силы. Если так, то обнаруженные на карусели законы природы на самом деле ничем не отличаются от тех, которые найдены в более привычных лабораториях; кажущаяся разница возникает просто от того, что наблюдатели в разных лабораториях видят вокруг себя разные вещи.

Догадка Маха была подхвачена Эйнштейном и приняла конкретные формы в общей теории относительности. В этой теории действительно существует влияние далеких звезд, создающее эффект центробежной силы на вращающейся карусели. Это сила тяготения. Конечно, в ньютоновской теории тяготения нет ничего, кроме простого притяжения между массами. Общая теория относительности более сложна: вращение материи Вселенной вокруг зенита, наблюдаемое на карусели, порождает поле, чем-то напоминающее магнитное поле, образуемое током, циркулирующим в катушке электромагнита. Именно эта «гравимагнитная» сила производит в системе отсчета, связанной с каруселью, эффекты, которые в более привычных системах отсчета приписываются центробежной силе. Уравнения общей теории относительности, в противоположность уравнениям ньютоновской механики, сохраняют свой вид как в лаборатории на карусели, так и в обычной лаборатории; вся разница в наблюдениях в этих лабораториях полностью связана с разным окружением – в одном случае Вселенная вращается вокруг зенита, в другом случае – нет. Однако, если тяготения не существует, такая интерпретация центробежной силы была бы невозможной, так что сила, которую мы ощущаем, находясь на карусели, позволила бы отличить систему отсчета, связанную с этой каруселью, от более привычных лабораторных систем. Этим была бы исключена какая бы то ни было эквивалентность между вращающимися и неподвижными лабораториями. Отсюда можно сделать вывод: симметрия между различными системами отсчета требует существования гравитации.

Симметрия, которая лежит в основе электрослабой теории, еще более необычна. Она не имеет никакого отношения к изменению нашей точки зрения в пространстве и времени, а связана с изменением нашей точки зрения об идентичности разных типов элементарных частиц. Как мы видели ранее, частица может находиться в таком квантово-механическом состоянии, когда про нее нельзя сказать с достоверностью, что она находится здесь или там или вращается по часовой стрелке или против часовой стрелки. Те же удивительные свойства квантовой механики позволяют частице находиться в состоянии, когда она не является с определенностью ни электроном, ни нейтрино, и это состояние существует до тех пор, пока мы не осуществим измерение некоторого свойства, отличающего эти две частицы, например их электрического заряда. В электрослабой теории форма законов природы не изменяется, если во всех наших уравнениях поменять электроны и нейтрино на такие смешанные состояния, которые не являются ни той, ни другой частицей. Поскольку с электронами и нейтрино взаимодействует множество других типов частиц, то одновременно необходимо перемешать семейства этих других частиц[104], например смешать u-кварки с d-кварками или фотоны с их родственниками – положительно и отрицательно заряженными W-частицами и нейтральными Z-частицами. Такая симметрия связывает электромагнитные силы, вызываемые обменом фотонами, со слабыми ядерными силами, которые порождаются обменом W– и Z-частицами. В электрослабой теории фотоны, W– и Z-частицы являются сгустками энергии четырех полей, существование которых диктуется симметрией электрослабой теории во многом аналогично тому, как гравитационное поле диктуется симметрией общей теории относительности.

Симметрии, подобные той, которая лежит в основе электрослабой теории, называются внутренними симметриями, так как мы воспринимаем их как некоторое внутреннее свойство частиц, не связанное с их положением в пространстве или характером движения. Внутренние симметрии менее знакомы нам, чем симметрии, действующие в обычном пространстве и времени и определяющие структуру ОТО. Чтобы чуть-чуть лучше понять, о чем идет речь, вы можете представить, что у каждой частицы есть маленький циферблат, стрелка которого показывает направления, помеченные словами «электрон» или «нейтрино», или «фотон» и «W», или находится в любом промежуточном состоянии. Внутренняя симметрия утверждает, что законы природы не меняют своей формы, если мы станем произвольным образом вращать стрелки на этих циферблатах.

Более того, в рамках того типа симметрий, которые определяют электрослабые силы, мы можем вращать эти стрелки по-разному для частиц в разных местах и в разные моменты времени. Это уже во многом похоже на симметрию, лежащую в основе общей теории относительности, которая позволяет поворачивать наши лаборатории не только на постоянный угол, но и на угол, увеличивающийся со временем, если, например, поместить лабораторию на карусель. Инвариантность законов природы по отношению к совокупности преобразований внутренних симметрий, которые зависят от местоположения и времени, называется локальной симметрией (поскольку результат преобразования симметрии зависит от положения в пространстве и времени) или калибровочной симметрией (по чисто историческим причинам)[105]. Именно локальная симметрия между разными системами отсчета в пространстве и времени приводит к необходимости существования тяготения. Во многом аналогичным образом другая локальная симметрия – между электронами и нейтрино (а также между u– и d-кварками и т.д.) – приводит к необходимости существования фотона и W– и Z-частиц.

Есть еще и другая точная локальная симметрия, связанная с внутренними свойствами кварков и получившая причудливое название «цвет»[106]. Мы видели, что существуют кварки разных типов, например кварки u и d, из которых сделаны протоны и нейтроны, входящие в состав всех обычных атомных ядер. Но кварки каждого из этих типов существуют в трех различных цветовых состояниях, которые физики (по крайней мере в США) часто называют красным, белым и синим. Конечно, все это не имеет никакого отношения к обычному цвету, а есть всего лишь способ отличить разновидности кварков данного типа. Насколько мы сейчас знаем, в природе существует точная симметрия между всеми цветами. Иными словами, сила, действующая между красным и белым кварками, равна силе, действующей между белым и синим кварками, а силы, действующие между двумя красными или двумя синими кварками, также равны друг другу. Но эта симметрия намного шире, чем просто симметрия по отношению к замене цветов кварков друг на друга. Согласно законам квантовой механики, можно рассматривать состояния отдельных кварков, которые не являются с определенностью красными, белыми или синими. Законы природы будут иметь точно ту же форму, если заменить красный, белый и синий кварки на кварки в трех подходящих смешанных состояниях (например, фиолетовый, розовый и бледно-лиловый). Опять же по аналогии с общей теорией относительности тот факт, что законы природы остаются прежними, даже если смешивание изменяется от точки к точке в пространстве и времени, приводит к необходимости включить в теорию семейство полей, аналогичных гравитационному полю и взаимодействующих с кварками. Таких полей восемь; их называют полями глюонов24), так как большие силы, которые они порождают, склеивают вместе кварки внутри протонов и нейтронов. Современная теория этих сил, квантовая хромодинамика, как раз и есть теория кварков и глюонов, подчиняющаяся локальной цветовой симметрии. Стандартная модель элементарных частиц состоит из теории электрослабого взаимодействия и квантовой хромодинамики.

Я упоминал, что принципы симметрии придают теориям определенную жесткость. Может показаться, что это недостаток, что физик хочет развивать теории, способные охватить как можно более широкий круг явлений, и поэтому предпочел бы, чтобы теории были как можно более гибкими и не теряли смысла при самых разных обстоятельствах. Да, во многих областях науки это верно, но только не в той области фундаментальной физики, о которой идет речь. Мы находимся на пути к чему-то универсальному, к чему-то, что управляет физическими явлениями везде во Вселенной, к тому, что мы называем законами природы. Мы не хотим разрабатывать теорию, способную описать все мыслимые типы сил, которые могли бы действовать между частицами в природе. Напротив, мы надеемся найти такую теорию, которая жестко позволила бы нам описать только те силы – гравитационную, электрослабую и сильную, которые существуют на самом деле. Жесткость такого рода в наших физических теориях есть часть того, что мы понимаем под их красотой.

Перейти на страницу:

Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Мечты об окончательной теории отзывы

Отзывы читателей о книге Мечты об окончательной теории, автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*