Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев
Слушатель: Такого же размера?
А.С.: Абсолютно такого же размера.
Другой слушатель: Но это в теории возможно?
Слушатель: Только в теории и возможно. А на практике?
А.С.: А на практике ножницы должны быть устроены «неизмеримым образом», так сказать. Эти куски не имеют объема. Представление обычного человека о том, что любая объемная фигура имеет объем, не соответствует реальности. Далеко не у любой пространственной фигуры можно посчитать объем. Далеко не у любой плоской фигуры можно вычислить площадь. Но вы не можете себе представить такую фигуру. Их выдумали математики. Фигуры эти страшные, и они никогда не возникнут ни в какой реальности. Но в теоретических построениях они есть, и без них вот никуда. (А в процессе обучения такие «безумные» примеры позволяют лучше понять, как устроены окружающие нас РЕАЛЬНЫЕ предметы.) На прямой, например, есть объекты, у которых нет длины. У каждой физической теории есть ареал, в котором она применима. Механика применима для размеров порядка нас с вами, но она неприменима для размеров порядка атома, там она не работает. Там совершенно другая физика. В экономике макросистемы, которые генерируют такие вещи как инфляция, безработица и так далее, они абсурдны для множества из двух, трех человек. И мое философское мнение, может быть, оно совершенно дилетантское, что у математики тоже есть ареал, но он находится в мозгу человека. Там вселенная совершенно другая, там нет воздуха, привычной атмосферы нет. Математика тоже ограниченно применима, она не универсальна, она совершенно в другой области живет, поэтому в другой области нужно искать ограничения.
Слушатель: Как называется направление в математике, где можно разрезать шары таким невероятным образом?
А.С.: Теория меры. То, что мы называем площадью и объемом, математики называют мерой. Совершенно страшные объекты получают меру, а некоторые не получают. Это очень существенно. Не любое множество можно измерить. В этом кроются границы того, что подсказывает нам наша интуиция. Она говорит про очень простые вещи, про многоугольники, многогранники, сферы, шары. Про что-то, достаточно просто устроенное. У чего всегда можно измерить объем, площадь. Если разрезать футбольный мяч на нормальные «человеческие» куски нормальным «человеческим» ножом, то вы, конечно, никогда не получите двух футбольных мячей, просто из соображений объема. То есть идея в том, что объема у тех кусков, которые участвуют в теореме, нет. Никакого. Ни нулевого, ни положительного, никакого нет. Но когда куски эти сложат вместе, у полученного мяча может быть вполне определенный объем. («Объединение двух неизмеримых кусков может быть измеримым».)
А теперь я все-таки расскажу вам про алгоритм Евклида в геометрических терминах. Давайте возьмем дробь 3/14 и превратим ее в цепную дробь:
А теперь смотрите, что я делаю геометрически. Беру прямоугольник 3 x 14 (рис. 71).
Рис. 71. Исходный прямоугольник размера 3 x 14.
Рис. 72. Режем пирог методом Евклида.
Отрезаю от прямоугольника квадраты (рис. 72). Остается прямоугольник 2 на 3. Отрезаю от него квадрат. Остается 2 клетки. Вот они и есть наши целые части. 4 больших, 1 поменьше и 2 совсем маленьких.
Это и есть алгоритм Евклида. Такой красивый, геометрический способ.
Как показать на картинке, что рациональное число обязательно раскладывается в конечную цепную дробь? Рациональное число — это как бы прямоугольник на клетчатой сетке. Потому, что у него верх и низ целые.
Вот, скажем, 105/13 — это прямоугольник 105 в ширину и 13 в высоту. 105 и 13 это целые числа, то есть у нас целое количество квадратиков. Теперь мы начинаем наш геометрический алгоритм Евклида. Отрезаем, пока можем, огромные квадраты 13 х 13, проводим здесь границу — это наша целая часть. Граница идет но целым клеткам, потому что отрезали целое количество квадратиков. Оставшаяся фигура целочисленный прямоугольник. Отрезаем квадраты от нее. Остается еще меньший прямоугольник. Понятно, что за конечное время всё будет вырезано. Каждый раз минимум один квадратик удаляется. Поэтому в какой-то момент квадратики закончатся. Теперь вспомним фокус-покус, который я провел выше с числом «корень из двух» (точнее, с числом √2 + 1, см. рис. 73).
Рис. 73. Прямоугольники, да не те… Стороны их несоизмеримы.
Начинаем делать ровно то же самое. Отрезаем квадратик (рис. 74). Потому что мы ищем, сколько раз единица укладывается в «корне из двух плюс один». Она укладывается ровно два раза. Какие оказываются у этой конфигурации стороны? 1 и √2 − 1. Тогда прямоугольник ABCD подобен BCD'А'.
Рис. 74. На горизонтальном прямоугольнике выделены два квадрата, остался кусочек, подобный исходному прямоугольнику.
То есть если мы перевернем и увеличим BCD'А' в некоторое количество раз, то получим ABCD. Доказательство нужно? Сейчас будет. Что такое подобие? Это «сильная похожесть» фигур. Углы у прямоугольников одинаковые, не хватает лишь пропорциональности сторон. Анализируем, есть ли она. 1 : (К + 1) равно ли (К − 1) : 1? «Напоминаем, что К это корень из двух».
В прошлый раз мы доказывали, что это одно и то же. Подобие имеет место. Что же произойдет дальше? Если мы начнем дальше отрезать квадратики, мы опять получим подобие, и так будет до бесконечности (рис. 75).
Рис. 75. «У попа была собака, он ее любил. Она съела кусок мяса, он ее убил — в землю закопал, камень положил. На камне написал: “У попа была собака… ” и так далее до бесконечности».
Теорема доказана. Из-за подобия мы будем эту операцию бесконечное количество раз проделывать, а значит, ни на какой сетке наш прямоугольник размеров (√2 + 1) х 1 не может лежать и, следовательно, √2 + 1 не будет рациональным числом.
Что-то это мне напоминает… В детстве у меня была книга. Она называется «Вот так история!». Там был мальчик. Он ужасно себя вел. Все были воспитанные, а он был невоспитанный. И вот этого мальчика отправили в невоспитанный город, где у него сразу старик отнял кровать, выгнал его, стал спать в этой кровати. Потом на его подушке выросло невоспитанное дерево, мальчика разбудило. Его все стали обижать, на улице все толкались, и он попросился