Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Эти пять лет неоплачиваемой научной работы должны были даться Бернхарду Риману нелегко. Он находился вдали от дома; от Геттингена до Квикборна было 120 миль, что означало двухдневное путешествие, столь же неудобное, сколь и дорогое. Однако он все же не был в полном одиночестве: в 1850 году в университет прибыл Рихард Дедекинд. Дедекинду было 19 лет — на пять меньше, чем Риману, — и он также планировал написать диссертацию. Из биографического очерка, написанного Дедекиндом и включенного в «Собрание трудов» Римана, явствует, что он питал приязнь и симпатию к своему старшему коллеге, а также глубоко восхищался его математическими способностями; несколько труднее решить, каковы в данном случае были чувства самого Римана.
Оба они защитили свои диссертации с интервалом в несколько месяцев — Риман в декабре 1851 года, а Дедекинд на следующий год. Обоих экзаменовал Гаусс, которому к тому моменту шел восьмой десяток, что не помешало ему сохранять исключительную чуткость к редким математическим талантам. По поводу диссертации, представленной молодым Дедекиндом, еще не достигшим своей математической зрелости, Гаусс написал отзыв, который лишь едва выходил за рамки сухого официального одобрения. Но по поводу диссертации Римана он разразился — а Гаусс был человеком, который нечасто расточал похвалы, — таким пассажем: «Существенная и ценная работа, которая не просто удовлетворяет всем требованиям, предъявляемым к докторским диссертациям, но и намного превосходит их».
И Гаусс не ошибся. (В том, что касается математики, он вряд ли вообще когда-либо ошибался.) Докторская диссертация Римана является ключевой работой в истории теории функций комплексной переменной. Я постараюсь подробно рассказать о теории функций комплексной переменной в главе 13, а пока достаточно сказать, что это очень глубокая, мощная и прекрасная ветвь анализа. До настоящего времени практически первое, что изучается в курсе теории функций комплексной переменной, — это условия Коши-Римана, которыми определяются хорошо себя ведущие и заслуживающие дальнейшего изучения функции. Эти уравнения в их современном виде впервые появились в докторской диссертации Римана. Эта работа также содержит первые наброски теории римановых поверхностей, которая представляет собой слияние теории функций с топологией (последний предмет в те времена также был новинкой, в нем не существовало какой бы то ни было связной системы знания, а только разрозненные результаты, восходящие ко временам Эйлера).[65] Докторская диссертация Римана была, одним словом, шедевром.
И Риман, и Дедекинд приступили ко второй ступени академического марафона, которому они себя посвятили, — второй диссертации и пробной лекции, которые требовались для занятия преподавательской должности в университете.
III.Оставим на некоторое время Бернхарда Римана в его комнате в далеком Геттингене за трудами над диссертацией на право чтения лекций и перенесемся назад на год или два во времени и на тысячи миль в пространстве — в Санкт-Петербург. Много воды утекло под мостами этого города с тех пор, как мы побывали здесь в последний раз, наблюдая, как Леонард Эйлер радовался жизни и плодотворно работал, несмотря на старость и слепоту, во времена правления Екатерины Великой. Эйлер умер в 1783-м, а сама императрица — в 1796 году. Екатерине наследовал ее эксцентричный и безответственный сын Павел. Четырех с половиной лет правления Павла оказалось более чем достаточно для знати, чтобы организовать переворот, удушить Павла и посадить на трон его сына Александра.
Вскоре вся нация оказалась поглощена конфликтом с Наполеоном, а ее говорящая по-французски аристократия — блеском светской жизни, как это описано Толстым в «Войне и мире». После войны Александр на какое-то время увлекся «управляемым самодержавием», затем последовал провал восстания группировки, боровшейся за либеральные идеи и известной под именем декабристов, и в 1825 году трон перешел к Николаю I, склонному к более старомодному абсолютизму.
Однако подтверждение и возобновление принципов абсолютизма не могло предотвратить грандиозных социальных перемен, наиболее достопамятная из которых — первый великий расцвет русской литературы (Пушкин, Лермонтов и Гоголь). Университет в Санкт-Петербурге, в то время отделенный от академии, разросся и процветал; кроме того, были основаны новые университеты в Москве[66], Харькове и Казани. Казанский университет мог похвастаться присутствием великого математика Николая Лобачевского, который занимал должность ректора до своего увольнения в 1846 году. Лобачевский был создателем неэвклидовой геометрии, о которой довольно скоро нам будет что сказать.[67]
В 1849-1850 годах, через 25 лет после воцарения Николая I, интеллектуальная жизнь в России подверглась еще одному всплеску репрессий, вызванному реакцией Николая на европейские революции 1848 года. Число принимавшихся в университеты было сокращено, а учившиеся за границей россияне получили указание вернуться. В такой обстановке молодой преподаватель Санкт-Петербургского университета выпустил две замечательные статьи о ТРПЧ.
Первое, что необходимо сказать о Пафнутии Львовиче Чебышеве, это что его фамилия — кошмар для всякого, кто занимается поиском по базам данных. В своих изысканиях для данной книги я насчитал 32 различных варианта написания его фамилии: Cebysev, Cebyshev, Chebichev, Chebycheff, Chebychev и т.д., и т.д.[68]
А если вы обратили внимание и на необычное имя Пафнутий, то вы не одиноки. Примерно в 1971 году на него обратил внимание математик Филип Дж. Дэвис. Дэвис решил исследовать происхождение имени Пафнутий и написал о своих изысканиях исключительно забавную книгу «Нить» (1983). Если очень коротко, то имя Пафнутий имеет коптское происхождение (Papnute — «Божий человек») и проникло в Европу через коптское христианство; такое имя носил один из второстепенных Отцов Церкви в IV столетии. Присутствовавший на Никейском соборе епископ Пафнутий (Paphnutius, как обычно пишется его имя) высказывался против целибата духовенства. К более позднему времени относится вскользь упоминаемый Дэвисом преподобный Пафнутий Боровский, сын знатного татарина; в возрасте 20 лет он удалился в монастырь, где и оставался до своей смерти в 94-летнем возрасте (1478). Вот что говорит агиограф этого Пафнутия: «Он был девственник и аскет и в силу этого великий чудотворец и пророк». (Примерно посередине моей работы над этой главой я получил электронное письмо от читательницы моей веб-колонки с просьбой предложить имя для ее новой собаки. Так что теперь некий Пафнутий гоняет белок где-то на Среднем Западе.)
Наш с вами Пафнутий был также в некотором роде чудотворцем. Он удостоился чести добиться единственных реальных успехов на пути к доказательству ТРПЧ в период между тем, как Дирихле поднял Золотой Ключ в 1837 году, и тем, как Риман повернул его в 1859-м. Занятно, что наиболее оригинальная работа Чебышева оказалась в стороне от основного направления исследований по ТРПЧ и послужила образованию менее значительного бокового течения, которое развивалось само по себе и слилось с главным потоком лишь 100 лет спустя.
Чебышев на самом деле написал две статьи по ТРПЧ. Первая, датируемая 1849 годом, озаглавлена «Об определении числа простых чисел, не превосходящих данной величины»[69]; стоит отметить схожесть с заглавием статьи Римана, написанной 10 лет спустя. В этой работе Чебышев взял Золотой Ключ Эйлера, поиграл с ним немного, примерно как Дирихле за 12 лет до того, и пришел к следующему интересному результату.
Первый результат Чебышева.Если π(N) ~ CN/ln N для некоторого фиксированного числа C, то C должно быть равным 1.
Вся проблема, конечно, лежала в этом «если». Чебышев не смог преодолеть эту проблему, как, впрочем, в течение полувека не смог и никто другой.
Вторая статья Чебышева, датируемая 1850 годом, значительно более любопытна. Вместо использования Золотого Ключа она начинается с формулы, доказанной шотландским математиком Джеймсом Стирлингом в 1730 году и выражающей приближенные значения факториальной функции для больших чисел. (Факториал числа N равен 1×2×3×4×…×N. Факториал числа 5, например, равен 120: 1×2×3×4×5 = 120. Обычно для факториала числа N используется обозначение N!. Формула Стирлинга утверждает, что для больших значений N его факториал примерно равен ). Чебышев превратил ее в другую формулу, содержащую ступенчатую функцию — функцию, которая имеет одно значение на некотором интервале аргументов, а затем прыгает к другому значению.
Вооруженный только этими средствами и используя ряд вполне элементарных приемов из дифференциального и интегрального исчисления, Чебышев получил два важных результата. Первый состоит в доказательстве «постулата Бертрана», выдвинутого в 1845 году французским математиком Жозефом Бертраном. Постулат гласит, что между любым числом и его удвоением (например, между 42 и 84) всегда найдется простое число. Второй результат Чебышева таков.