Kniga-Online.club
» » » » Клауди Альсина - Том 11. Карты метро и нейронные сети. Теория графов

Клауди Альсина - Том 11. Карты метро и нейронные сети. Теория графов

Читать бесплатно Клауди Альсина - Том 11. Карты метро и нейронные сети. Теория графов. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Отношение порядка

Еще один тип отношений, неотъемлемых в математике, да и в жизни, — это отношения порядка, которые обладают следующими свойствами.

1. Рефлексивностью: a R а.

2. Антисимметричностью: если a R Ь и Ь R а, то должно выполняться а = Ь.

3. Транзитивностью: если a R b и b R с, то a R с.

Вместо «а R b», как правило, используется обозначение «а =< Ь», которое нам прекрасно знакомо применительно к числам (0 =< 1 =< 2 =< …). Следовательно, для каждого элемента имеет смысл рассматривать множество {Ь/а =< Ь} всех элементов, больших а, или множество {Ь/Ь =< а} всех элементов, меньших а. И снова с помощью графов можно представить элементы множества в виде вершин, соединить ребрами упорядоченные элементы и ввести критерий вертикальности («элемент, расположенный ниже, является меньшим»), горизонтальности («элемент, расположенный правее, является бóльшим») или использовать для указания упорядоченности ориентированные графы.

Наглядное представление упорядоченности.

На следующем рисунке стрелками, обозначающими «включен в», указана упорядоченность частей множества из трех элементов {а, Ь, с}.

Граф включения множеств.

Генеалогические деревья — пример отношения упорядоченности между людьми. На генеалогическом дереве родственные связи можно представить стрелками, но обычно их выражают посредством критериев горизонтальности или вертикальности.

Отображения

Еще одним базовым обозначением теории множеств является отображение f: А —> В, где элементам а множества А присваивается единственный элемент bf (а) множества В. График функции f определяется как

Это множество можно представить на множестве А x В.

График функции f(x) = х2 (парабола).

График функции целой части числа для положительных вещественных чисел.

Температура тела человека.

* * *

ЖОРЖ ПЕРЕК И ЕГО «ДУМАТЬ/КЛАССИФИЦИРОВАТЬ»

Блестящий интеллектуал Жорж Перек в период с 1976 по 1982 год опубликовал множество сюрреалистических статей критического содержания. Две наиболее выдающихся среди этих статей носили названия «Думать/классифицировать» и «Краткие заметки об искусстве и способе расставлять книги». В них Перек показывает, как сложно классифицировать людей или вещи, расставить по порядку книги и так далее. Например, он демонстрирует чрезвычайную сложность составления «упорядоченной» библиотеки, так как книги можно расставить в алфавитном порядке по фамилиям их авторов, по цвету обложек, переплету, дате покупки, дате публикации, формату, жанру, языку… Сложные ситуации всегда возникают и в теории, и на практике.

* * *

Графические калькуляторы и современные компьютерные программы позволяют отобразить графики функций. Однако во многих случаях эти графики оказываются лишь приближенными.

В двух первых примерах, приведенных выше, можно построить график четко заданных функций, но в третьем примере представление сводится к графу из точек, изображающему немногочисленные данные о температуре тела человека. Как экстраполировать значения температуры между точками, для которых имеются данные измерений? Очевидно, точки можно соединить прямыми, но возможны и другие варианты.

В мире данных, полученных эмпирически, очень часто используются графы с конечным числом вершин (x1, y1), …, (хn, уn). Изучение графиков, проходящих через эти точки, или же их аппроксимация представляет большой интерес с точки зрения статистики, особенно при анализе возможных связей между значениями одной переменной x1…., хn и другой переменной у1…, уn.

Отображения, связывающие элементы двух конечных множеств А и В, обычно представляют сочетанием графов и диаграмм Венна.

Графическое представление отображения f, связывающего множества {a, b, с, d} и {1, 2, 3, 4}.

Если разным элементам одного множества сопоставлены разные элементы другого множества, то такое отображение называют инъективным. Если каждому элементу области значений сопоставлен хотя бы один элемент области определения, то такое отображение называется сюръективным. Если отображение является одновременно инъективным и сюръективным, то есть между элементами обоих множеств (области определения и области значений) существует взаимно однозначное соответствие, такое отображение называется биективным. На следующих графах представлены эти виды отображений.

Инъективное отображение.

Сюръективное отображение.

Биективное отображение.

Чтобы найти все возможные отображения конечного множества А на множество В, будет полезно использовать графы, которые являются деревьями.

Дерево возможных отображений множества A = {a, b} на множество B = {1, 2, 3, 4}.

Если даны два отображения — отображение f множества А на множество В и отображение g множества В на множество С, то имеет смысл говорить о композиции отображений и g множества А на множество С, то есть о присвоении каждому элементу а множества А элемента g (f(а)) множества С. Композиции отображений g и обозначается как g о f. Ее можно представить в виде графов следующего вида.

Граф композиции отображений q и f.

Нечеткие множества и графы

В последние десятилетия в целях моделирования сложных ситуаций реальной жизни все шире применяется теория нечетких множеств, созданная инженером Калифорнийского университета в Беркли Лотфи Заде. В классической трактовке элемент а либо принадлежит множеству А, либо нет. Следовательно, множество определяется характеристической функцией: она принимает значение 1 для элементов, принадлежащих A, и 0 для элементов, не принадлежащих A.

Идея Заде состояла в том, чтобы расширить характеристические функции и создать нечеткие множества, то есть определить функции, которые ставят в соответствие элементам x универсального множества X значения f(х) в интервале от 0 до 1. В такой трактовке f(х) определяет степень принадлежности х к А.

Нечеткие множества, соответствующие утверждению «результат примерно равен 1».

* * *

ЖУРНАЛЫ О ДИСКРЕТНОЙ МАТЕМАТИКЕ, КОМБИНАТОРИКЕ И ГРАФАХ

Ниже перечислены ведущие современные журналы по этим темам.

· Ars Combinatorica.

· European Journal of Combinatorics.

· Combinatorica.

· Geombinatorics.

· Combinatorics, Probability and Computing.

· Journal of Algebraic Combinatorics.

· Designs, Codes and Cryptology.

· Journal of Combinatorial Theory. Series A.

· Discrete and Computational Geometry.

· Journal of Combinatorial Theory. Series B.

· Discrete Applied Mathematics.

· Journal of Geometry.

· Discrete Mathematics.

· Journal of Graph Theory.

· Electronic Journal of Combinatorics.

* * *

Одному и тому же расплывчатому понятию можно сопоставить разные нечеткие множества. Именно это и вызывает интерес к теории нечетких множеств — она допускает альтернативные трактовки одной и той же ситуации. Задачи искусственного интеллекта, управления механизмами, обработки цифровых фотографий, распознавания образов и другие задачи (даже стиральные машины с нечеткой логикой) — прекрасные наглядные примеры того, как эта теория используется на практике. Введение степеней — очень важная идея, ведь между черным и белым существует множество оттенков серого.

Перейти на страницу:

Клауди Альсина читать все книги автора по порядку

Клауди Альсина - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Том 11. Карты метро и нейронные сети. Теория графов отзывы

Отзывы читателей о книге Том 11. Карты метро и нейронные сети. Теория графов, автор: Клауди Альсина. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*