Kniga-Online.club
» » » » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Читать бесплатно ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.. Жанр: Математика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

создавать пробные описания для каждой рамки;

сравнивать их с пробными описаниями других рамок каждого класса

переделывать описания

(1) добавляя информацию;

(2) отбрасывая информацию;

(3) рассматривая ту же информацию под другим углом.

Этот процесс повторяется до тех пор, пока мы не найдем различия между двумя классами.

Эталоны и детектор сходства

Хорошей стратегией было бы построение описаний, как можно более структурно схожих между собой, поскольку любая схожая структура облегчает процесс сравнения. К этой стратегии относятся два важных элемента теории. Один из них — идея «описания-схемы» или эталона; другой — идея детектора сходства.

Сначала рассмотрим детектор сходства. Это особый активный элемент, присутствующий на всех уровнях программы (На разных уровнях могут быть детекторы различных типов.) Он беспрерывно работает, проверяя индивидуальные описания и сравнивая их между собой в поисках черт, повторяющихся от одного описания к другому. Обнаружение сходства приводит в действие операции, изменяющие одно или несколько описаний.

Теперь перейдем к эталонам. После окончания обработки данных мы сразу пытаемся создать эталон или схему описаний — один и тот же формат для описаний всех рамок данной задачи. Идея здесь состоит в том, что каждое описание может быть разбито на несколько подописаний, а те, если это необходимо, в свою очередь могут быть разбиты на подподописания. Вы достигаете дна, спускаясь к примитивным понятиям на уровне препроцессора. Важно найти такой способ разбивания на подпрограммы, который отразил бы общность между всеми рамками; иначе «псевдо-порядок», который вы введете в мир, окажется бессмысленным и ненужным.

На основе какой информации строятся эталоны? Рассмотрим это на примере. Возьмем ЗБ #49 (рис. 122). Предварительная обработка информации сообщает нам, что каждая рамка состоит их нескольких маленьких «о» и большой замкнутой кривой. Эти ценные сведения стоит включить в эталон. Таким образом, наша первая попытка создания эталона выглядит так:

большая замкнутая кривая: —

маленькие «о»: —

Это очень просто: в описании-эталоне есть два гнезда, куда надо будет вставить подописания.

Рис. 122. Задача Бонгарда #49. (Из книги Бонгарда «Проблема узнавания»).

Гетерархическая программа

Теперь происходит интересная вещь, вызванная к жизни словами «замкнутая кривая». Один из важнейших узлов в программе — это нечто вроде семантической сети или сети понятий, в которой все известные программе существительные, прилагательные и так далее связаны и соотнесены между собой. Например, «замкнутая кривая» тесно связана с понятиями «внутри» и «снаружи». Сеть понятий битком набита информацией о связях между терминами: она говорит нам, что противоположно чему, что сходно с чем, какие вещи часто встречаются вместе и так далее. Небольшой кусочек концептуальной сети показан на рис. 123; я объясню его позже. Пока давайте вернемся к задаче #49. Понятия «внутри» и «снаружи» активируются благодаря тому, что в сети понятий они находятся вблизи от «замкнутой кривой». Это влияет на постройку эталона, в который вводятся гнезда для внутренней и внешней сторон кривой. Таким образом, вторым приближением эталона является:

большая замкнутая кривая: —

маленькие «о» внутри: —

маленькие «о» снаружи: —

В поисках дальнейших подразделений, термины «внутри» и «снаружи» заставят процедуры программы рассмотреть эти районы рамки. В районе рамки I-A ЗБ #49 обнаруживается следующее:

большая замкнутая кривая: круг

маленькие «о» внутри: три

маленькие «о» снаружи: три

Описанием рамки II-А той же задачи может быть:

большая замкнутая кривая: сигара

маленькие «о» внутри: три

маленькие «о» снаружи: три

В этот момент детектор сходства, работающий параллельно с другими операциями, обнаруживает повторение понятия «три» во всех гнездах, описывающих «о»; этого оказывается достаточно, чтобы снова модифицировать эталон. Обратите внимание, что первая модификация была предложена сетью понятий, а вторая — детектором сходства. Теперь наш эталон для задачи #49 приобретает такой вид:

большая замкнутая кривая: —

три маленьких «о» внутри: —

три маленьких «о» снаружи: —

Теперь, когда «три» поднялось уровнем выше и вошло в эталон, имеет смысл обратиться к его соседям по сети понятий. Один их них — «треугольник», что означает, что треугольники, состоящие из «о», могут оказаться важными для решения задачи. В результате оказывается, что эта дорога заводит в тупик, — но как мы могли знать об этом заранее? Человек, решающий эту задачу, скорее всего пошел бы тем же путем, так что хорошо, что наша программа нашла эту дорогу.

Описание рамки II-Д может быть таким:

большая замкнутая кривая: круг

три маленьких «о» внутри: равносторонний треугольник

три маленьких «о» снаружи: равносторонний треугольник

Разумеется, при этом было отброшено огромное количество информации о размерах, положении и ориентации этих треугольников и т. п. Но именно в этом и заключается смысл создания описаний вместо использования необработанных данных! Это похоже на «воронку», которую мы обсуждали в главе XI.

Сеть понятий

Нам не понадобится рассматривать решение задачи #49 целиком, поскольку мы уже показали, каким образом индивидуальные описания, эталоны, детектор сходства и сеть понятий непрерывно взаимодействуют между собой. Рассмотрим более подробно, что представляет из себя сеть понятий и каковы ее функции. Упрощенный ее фрагмент, приведенный на рис. 123, кодирует следующие идеи:

«высоко» и «низко» противоположны.

«сверху» и «снизу» противоположны.

«высоко» и «сверху» схожи.

«низко» и «снизу» схожи.

«справа» и «слева» противоположны.

различие между «справа-слева» подобно различию между «высоко-низко».

«противоположно» и «схоже» противоположны.

Обратите внимание, что мы можем говорить как об узлах, так и о связях сети. В этом смысле ни один объект в сети не находится уровнем выше другого. В другой части данной схемы закодированы следующие понятия:

Квадрат — это многоугольник.

Треугольник — это многоугольник.

Многоугольник — это замкнутая кривая.

Разница между треугольником и квадратом в том, что у первого 3 стороны, а у второго — 4.

4 схоже с 3.

Круг — это замкнутая кривая.

У замкнутой кривой есть внутренний и внешний районы. «Внутри» и «снаружи» противоположны.

Рис. 123. Небольшая часть сети понятий программы для решения задач Бонгарда. «Узлы» соединены между собой «связями», которые, в свою очередь, могут быть связаны. Принимая связи за глаголы, а соединенные ими узлы за подлежащие и дополнения, можно построить на основе этой диаграммы разные русские предложения.

Сеть понятий очень широка. Кажется, что знания закодированы в ней только статистически, или декларативно, — но это верно лишь наполовину. На самом деле, ее знания граничат с процедурными, потому что сходство в сети действует как гид, или «подпрограммы», сообщая основной программе, как лучше понимать картинки в рамках.

Например, какая-нибудь из первых догадок может оказаться ошибочной, но при этом содержать зерно правильного ответа При первом взгляде на ЗБ #33 (рис. 124) можно подумать, что класс I содержит «колючие» фигуры, а класс II — «гладкие». Однако, если присмотреться, эта догадка оказывается неверной. Все же в ней есть ценная информация, и можно попытаться развить эту идею дальше, работая с теми понятиями сети, которые связаны с «колючим». Это понятие схоже с «острым», которое и оказывается отличительной чертой класса I. Таким образом, одна из основных функций сети понятий состоит в том, чтобы позволять модификацию ранних ошибочных идей и переход к вариациям, которые могут оказаться правильными.

Перейти на страницу:

Хофштадтер Даглас Р. читать все книги автора по порядку

Хофштадтер Даглас Р. - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Хофштадтер Даглас Р.. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*