Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики
Итак, существует 98,6 % вероятности того, что газ займет всю коробку. Если бы мы взяли больше частиц и более мелкую сетку, то получили бы более значительную разницу. Таким образом, модель распределения Больцмана говорит то же самое, что и термодинамика.
Можно задаться вопросом, существует ли какой-нибудь микроскопический способ понять энтропию термодинамики. Энтропия — это величина, которая возрастает в каждом изолированном процессе и дает нам меру разрежения энергии. Можем ли мы найти какую-то величину, которая бы тоже выросла в процессе, который мы только что изучили? Ответ — да: возросло число микросостояний. Если в начале мы насчитывали их 13 800, то в конце — почти миллион. Число микросостояний показывает нам, какова вероятность получения этого макросостояния; кроме того, разумно предположить, что система всегда эволюционирует в сторону наиболее вероятного состояния. Итак, мы можем прийти к выводу, что энтропия и число микросостояний могут быть каким-то образом связаны.
* * *
ЛЮДВИГ БОЛЬЦМАН И АТОМЫ
Людвиг Больцман (1844–1906), портрет которого вы видите рядом с этими строками, был австрийским физиком, который ввел идею, что такие термодинамические явления, как температура, на самом деле — крупномасштабное проявление микроскопического поведения атомов. В то время само существование атомов еще вызывало дискуссии, и многие коллеги ученого отвергали его теорию, считая, что не существует никакого доказательства того, что материя состоит из элементарных частиц.
Больцман покончил жизнь самоубийством в 1906 году — как гласит легенда, из-за того, что научное сообщество отвергло его идеи. На самом деле это было связано с проблемами медицинского характера, а не с научным разочарованием. Через два года после смерти Больцмана Жан Батист Перрен (1870–1942) подтвердил существование атомов с помощью эксперимента над броуновским движением, в котором маленькие частицы пыли хаотично двигались, сталкиваясь с молекулами жидкости.
* * *
К этому же выводу пришел и Больцман, которому удалось доказать, что энтропия пропорциональна логарифму числа микросостояний, умноженному на его известную постоянную. Логарифм обозначается как log и является обратным экспоненте. Например, выражение log3 говорит нам, в какую степень мы должны возвести число 10, чтобы получить 3. Математически энтропия Больцмана выражается следующим образом:
S = k·logW,
где S — энтропия, k — постоянная Больцмана и W — число микросостояний.
Энтропия как хаосВ популярной литературе часто встречается объяснение энтропии как хаоса. Теперь, когда мы знаем связь между энтропией и числом микросостояний, мы можем понять, почему это происходит. Самый простой способ увидеть это — обратить внимание на доску, покрытую шашками.
Предположим, что мы ставим шашки в порядке, как показано на рисунке.
Каково сейчас число микросостояний, совместимых с этой конфигурацией? Чтобы найти его, воспользуемся рассуждениями из области комбинаторики, подобными приведенным в предыдущей главе. У нас 32 черные клетки и столько же белых. Мы ставим первую черную шашку на любое белое поле; для следующей есть только 31 вариант, и так далее. Следовательно, существует всего 32! способа распределить черные шашки, если считать, что они отличаются друг от друга. Точно так же есть 32! способа распределения белых шашек, так что всего у нас 32!·32! способов установить шашки, чтобы получить вышеуказанную конфигурацию.
Остальные конфигурации будут более беспорядочными, чем эта, поскольку нет никаких ограничений, связанных с тем, как следует располагать шашки. Например, конфигурации, показанные ниже, более беспорядочны, чем предыдущая.
Вычислим общую сумму возможных конфигураций всех шашек. Поскольку нам все равно, белая шашка или черная и где она находится, рассмотрим их все одновременно. Для первой у нас будет 64 возможности, для второй — 63, и так далее.
Итак, общее число конфигураций равно 64! Вероятность получения упорядоченной конфигурации равна числу упорядоченных конфигураций, разделенному на общее число конфигураций:
Как видите, упорядоченное положение имеет очень малую вероятность, а хаотичные состояния, напротив, очень вероятны. Поскольку состояния, характеризующиеся высокой энтропией, а также хаотичные состояния имеют очень высокую вероятность, мы можем связать их друг с другом и заключить, что состояния высокой энтропии более хаотичны.
Энтропия как непредсказуемостьКак мы только что увидели, энтропия пропорциональна числу микросостояний, характерных для макросостояния, в котором находится система. Однако даже зная макросостояние, мы не можем знать микросостояние, и чем выше энтропия системы, тем ниже ее предсказуемость. Предположим, что у нас есть система с 1000 различных микросостояний. Если мы знаем, что в этот момент она находится в первом, мы можем быть уверены только в том, что в следующий момент она будет находиться в одном из других 999. Но если у нас есть система только из десяти состояний, мы знаем, что есть только девять возможностей, начиная с текущего момента, то есть такая система более предсказуема.
Можем пойти еще дальше и задать вопрос, какова минимально возможная энтропия для любой системы и какому количеству микросостояний она соответствует.
Вспомним, что энтропия равна:
S = k·logW,
где функция log — это логарифм, функция, обратная экспоненте. Предположим, что у нас только одно микросостояние: в этом случае логарифм единицы равен нулю, поскольку любое число, возведенное в нулевую степень, равно единице. Итак, энтропия одного микросостояния равна нулю. С точки зрения непредсказуемости это справедливо: нет более предсказуемой системы, чем та, у которой только одно состояние. Ее непредсказуемость точно равна нулю.
Энтропия как степень неосведомленностиЕсть и другой способ понимания энтропии, который может быть адаптирован для применения за пределами физики — в рамках теории информации. Речь идет о понимании энтропии как недостающей информации о системе, то есть о степени нашей неосведомленности.
Как было видно в предыдущей главе, обычно мы знаем давление, температуру и объем газа, но при этом не знаем всего остального, то есть мы обладаем смехотворным количеством информации, необходимой для описания состояния системы.
Пусть даже эта информация — единственно значимая для прогнозирования, но она остается крайне малой по сравнению со всей информацией о рассматриваемом газе. Главную роль в способе описания энтропии снова играет число доступных микросостояний. Если в системе миллион состояний и мы не знаем, в каком из них она находится, степень нашей неосведомленности намного больше, чем если бы в ней было только десять состояний. Итак, мы знаем о системе с высокой энтропией намного меньше, чем о системе с низкой энтропией.
Какой же смысл в том, чтобы принимать энтропию за информацию? Информации нужен наблюдающий субъект — это не что-то, что можно потрогать. Когда мы говорим «энтропия системы — это степень нашей неосведомленности о ней», кажется, будто мы утверждаем, что энтропия не имеет реального существования во Вселенной, это просто человеческое понятие, которое измеряет то, что мы знаем, и не более.
Действительно, есть системы, для которых понятие энтропии не имеет смысла. В системе, состоящей из предмета, прикрепленного к пружине, и самой пружины, нет никакой энтропии: само это понятие неприменимо к ситуации. Энтропия — макроскопическая величина и сама по себе применима только для скоплений частиц. Однако в фундаментальных законах Вселенной о ней нет никакого упоминания: речь идет о статистическом понятии, которое помогает нам осмыслить некоторые характеристики сложных систем.
Именно понимание энтропии как меры информации привело американского математика Клода Шеннона (1916–2001) к использованию ее в качестве ключевого элемента в своей теории информации.
Энтропия как информацияПредположим, что мы опаздываем на ужин с нашей второй половинкой и хотим послать ей сообщение: «Сегодня я опоздаю на ужин». Для этого наш мобильный телефон должен обработать информацию, содержащуюся в нашем сообщении, перевести ее в электрические импульсы и послать ее с помощью электромагнитных волн. Телефонной компании хотелось бы использовать минимальное количество энергии для передачи нашего сообщения, поскольку энергия стоит денег. Так что ей нужно знать минимальное количество информации, которое должно быть зашифровано.