Kniga-Online.club
» » » » Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев

Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев

Читать бесплатно Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев. Жанр: Математика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
2n, 3n, 6n и так далее, то матанализ разрешает ее стереть, потому что n2 и n «разного порядка роста». И неравенство будет верным при любом n, начиная с некоторого места. (А именно с того места, когда n2 станет подавляюще большим по сравнению с n.)

В матанализе есть основной принцип: если вы про какое-то число показали, что оно меньше сколь угодно малого положительного числа, то вы доказали, что оно равно нулю (если оно изначально не было отрицательным). Вот вы получили какое-то число, вы хотите доказать, что оно равно нулю. Покажу типичный прием матанализа. Пусть есть число а. Рассмотрим такое число, как 1/n, и покажем, что наше число меньше, чем 1/n. Допустим, это мы доказали для любого натурального значения n. Для 1000, для 1000000, для 1000000000... Если вы умеете доказать такое неравенство для любого n, значит, вы умеете доказать, что а равно нулю.

Вот в этом, собственно, весь принцип матанализа и заключен. Всё остальное, что есть в матанализе: интегралы, производные — не более чем упражнения с этой логикой (математики говорят в этом случае: «Применим технику работы с порядками бесконечно малых»),

И самый последний пример. Мне рассказал его папа, когда я еще даже в школу не ходил. Папа взял яблоко, отрезал от него половинку и говорит: «Это сколько от яблока?» — «1/2», — сказал я. — «А если теперь я к этой половинке прибавлю половинку оставшейся половинки, то это что здесь надо написать?»

Слушатель: 1/2 + 1/4.

А.С.: А если я проделаю это бесконечное количество раз? Тогда что я получу?

1/2 + 1/4 + 1/8 + 1/16 + ... = 1.

Слушатель: Ноль.

Другой слушатель: Единицу.

А.С.: Я получу число один, причем в точности число 1.

Почему в точности? Потому что каждый раз число получалось не больше единицы, это очевидно. Значит, мы не можем получить число больше единицы. Но какое бы маленькое число мы не взяли, в конце концов 1/n станет меньше его. На самом деле у нас в знаменателе вместо n стоят степени двойки: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192…

Они очень быстро растут, поэтому 1/2n — очень быстро уменьшается. И в итоге очередное расстояние до числа «1» станет меньше любого наперед заданного числа. То есть они уходят в ноль. Получается, что наша сумма неограниченно приближается к единице, и вот тогда математик говорит: «Следовательно, она равна единице». Всё. Вот он, предельный переход. Это то, что учат в матанализе на любом факультете любого вуза. Больше ничего в нём нет[13].

Слушатель: А если здесь просто включить житейскую мудрость и подумать, что мы отрезали от одного целого яблока?

А.С.: Да. В данном случае можно. Но житейская мудрость — она такая штука, что она иногда не работает. Давайте решим такую задачу.

Кузнечик сначала прыгает на один метр, а потом на 1/2 метра, а потом — на 1/3, а потом — на 1/4, а потом — на 1/5, и так далее… Вот он прыгает и прыгает. Есть ли предел того, куда он может допрыгать?

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ...

Слушатель: Да.

А.С.: При наивном подходе кажется, что есть, потому что «шажки все меньше и меньше». Но тем не менее, друзья мои, вы будете смеяться, или удивляться, или поражаться, или возмущаться, но

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... = +∞

(т. е. эта сумма равна бесконечности).

Нет никакого предела тому, куда может дойти этот кузнечик. Никакого. Он может дойти до Луны, может дойти до Солнца, и далее, прямо в Космос!

В прошлом примере у нас шажки были всё меньше и меньше, они стремились к нулю, но в сумме получилось число, равное единице. А эти шажки, хотя и тоже всё меньше и меньше, но уйти этими шажками можно до бесконечности, вот такая загадка природы. Хотите, покажу, почему?

Слушатели: Да.

А.С.: Вот смотрите, сейчас я с кузнечиком сделаю страшную штуку, я сейчас его заменю на кузнечика, который шагает еще медленнее. А именно: кузнечик этот будет шагать следующим образом.

1 + 1/2 + 1/4 + 1/4,

то есть вместо одной трети, он шагает на одну четверть. Не правда ли, такой кузнечик будет отставать от первого?

Слушатель: Да.

А.С.: А теперь вместо одной пятой я сразу одну восьмую поставлю. То есть первый кузнечик на одну пятую шагает, а мой, второй — он сразу прямо раз — и «скис» — только на одну восьмую. И так 4 раза по одной восьмой:

1 + 1/2 + 1/4 + 1/4 + 1/8 + 1/8 + 1/8 + 1/8.

А вместо одной девятой я напишу что?

Слушатели: Одну шестнадцатую?

А.С.: Правильно. Одну шестнадцатую, и так повторим эту добавку 8 раз. А дальше я что напишу? Вместо одной семнадцатой?

Слушатель: Одна тридцать вторая.

А.С.: Одну тридцать вторую. Отлично. И повторим ее 16 раз!

1 + 1/2 + 1/4 + 1/4 + 1/8 + 1/8 + 1/8 + 1/8 + 1/16 + 1/16 + 1/16 + 1/16 + 1/16 + 1/16 + 1/16 + 1/16 + 1/32 + ...

Похоже, что второй кузнечик всё время отстает от первого. Небось, он совсем отстанет от него: ведь первый, как мы утверждаем, ускачет на бесконечное расстояние. Нет, самое страшное здесь вот что. Хоть второй и отстает, но он ТОЖЕ ускачет на бесконечное расстояние. Чему равна сумма 1/4 + 1/4 (двух равных слагаемых)?

Слушатель: 1/2.

А.С.: Отлично. А такая: 1/8 + 1/8 + 1/8 + 1/8?

Слушатель: Одна вторая.

А.С.: Тоже одна вторая! А для шестнадцатых долей?

Слушатель: Тоже одна вторая.

А.С.: Теперь вы поняли, почему он дойдет до бесконечности?

Слушатель: Нет.

А.С.: Потому что мы каждый раз, в каждой очередной группе шагов, будем получать в сумме 1/2. Значит, он всё снова и снова отходит на 0,5. А таких «одних вторых»-то бесконечное количество штук. Вот он и уйдет на бесконечность.

и так далее. Значит, на бесконечность тем более ускачет и первый кузнечик!

Но самое неожиданное я приберег на конец. (Берёт в руки мяч и держит его над полом.) Уроним этот мяч и послушаем, сколько раз он ударится.

Слушатель: Бесконечность.

А.С.: Правильно. Бесконечность, но она будет «преодолена» за конечный промежуток времени. Законы физики это подтвердят. Единственное, что, к сожалению, в атомных

Перейти на страницу:

Алексей Владимирович Савватеев читать все книги автора по порядку

Алексей Владимирович Савватеев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Математика для гуманитариев. Живые лекции отзывы

Отзывы читателей о книге Математика для гуманитариев. Живые лекции, автор: Алексей Владимирович Савватеев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*