Kniga-Online.club
» » » » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Читать бесплатно ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.. Жанр: Математика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Решение этой дилеммы включает понятие интерпретатора — механизма, извлекающего значение. (Под «интерпретатором» в этом контексте я подразумеваю не музыканта-исполнителя, а механизм в мозгу у слушателя, извлекающий значение из пьесы, которую тот слышит.) Интерпретатор может заметить многие важные аспекты значения пьесы, слушая ее в первый раз; это, по-видимому, подтверждает гипотезу о том, что значение находится в самой пьесе и просто извлекается из нее. Но это только полдела. Музыкальный интерпретатор действует, создавая многомерную мысленную структуру — внутреннее представление о пьесе, — которую он пытается соотнести с ранее известной информацией, находя связи с другими многомерными мысленными структурами, в которых закодирован предыдущий опыт. По мере того, как происходит этот процесс, полное значение пьесы постепенно выходит на поверхность. В действительности, могут пройти годы прежде чем мы почувствуем, что наконец-то поняли сокровенное значение определенной пьесы. Это, как кажется, поддерживает гипотезу о том, что значение музыкального произведения также находится и вне его и что роль интерпретатора — постепенно собрать это значение воедино.

Без сомнения, истина лежит где-то посередине значения — как музыкальное, так и лингвистическое — до какой-то степени локализованы только отчасти. Используя терминологию главы VI, мы можем сказать, что музыкальные произведения и куски текста отчасти являются триггерами, и отчасти — носителями явного значения. Яркая иллюстрация этого дуализма — табличка со старинной надписью значение здесь частично хранится в библиотеках и мозгах ученых всего мира, и в то же время явно содержится в самой табличке.

Таким образом, еще один способ охарактеризовать различие между «синтаксическими» и «семантическими» свойствами (в только что описанном смысле) заключается в том, что синтаксические свойства безусловно находятся внутри самого объекта, в то время как семантические свойства зависят от отношений этого объекта с потенциально бесконечным множеством других объектов и, следовательно, не являются полностью локализуемыми В синтаксических свойствах в принципе нет ничего спрятанного и загадочного, в то время как спрятанность — суть семантических свойств. Именно поэтому я предложил различать между «синтаксическим» и «семантическим» аспектами зрительных образов.

Красота, Истина и Форма

А как насчет красоты? Согласно вышеизложенным идеям, это, безусловно, не синтаксическое свойство Семантическое ли это свойство? Свойство ли это, скажем, отдельной картины? Давайте рассмотрим этот вопрос в применении к единственному зрителю С каждым из нас бывало, что то, что когда-то казалось красивым, некоторое время спустя выглядит серым и скучным, а в промежутках, возможно, кажется нейтральным Значит ли это, что красота — свойство преходящее? Можно повернуть ту же ситуацию другим концом и сказать, что изменился зритель. Но, имея в виду определенного зрителя, определенную картину и определенный момент времени, можно ли утверждать, что красота — качество, которое либо присутствует, либо нет? Или же красота неопределима и неуловима?

Возможно, что в каждом человеке в зависимости от обстоятельств могут действовать различные уровни интерпретаторов. Эти разные интерпретаторы выдают разные значения, устанавливают разные связи и обычно оценивают все глубокие аспекты по-разному. Из-за этого понятие красоты кажется почти неопределимым. Именно по этой причине я решил связать красоту в Диалоге «Магнификраб» с истиной, которая, как мы видели, является одним из самых неуловимых понятий математики.

Нейронный субстрат парадокса Эпименида

В заключение этой главы я хочу привести некоторые идеи, касающиеся основной проблемы истины, парадокса Эпименида. Мне кажется, что воспроизведение Тарским этого парадокса в ТТЧ позволяет глубже понять его природу в русском языке. Тарский нашел, что в его версии парадокса есть два разных уровня. На одном уровне это суждение о себе самом, которое было бы истинно, если бы оно было ложно и ложно, если бы оно было истинно. На другом уровне — который я буду называть арифметическим субстратом — это суждение о целых числах, истинное тогда и только тогда, когда оно ложно.

Почему-то это последнее раздражает нас гораздо больше первого. Некоторые люди просто отмахиваются от первого уровня, как от «бессмыслицы», из-за его автореферентности. Но отмахнуться от парадоксального суждения о целых числах невозможно. Суждения о целых числах просто не могут быть одновременно и истинными, и ложными.

Мне кажется, что превращение Тарским парадокса Эпименида учит нас искать субстрат также в языковой версии парадокса. В арифметической версии высший уровень значения опирается на низший арифметический уровень. Аналогично, автореферентное суждение, которое мы воспринимаем («Это высказывание ложно») может являться только высшим уровнем некой конструкции с двумя уровнями. Что же тогда играет здесь роль низшего уровня? Какой механизм порождает язык? Мозг. Значит, необходимо искать нейронный субстрат парадокса Эпименида — низший уровень противоречащих друг другу физических событий, то есть событий, которые не могут произойти одновременно. Если такой физический субстрат существует, то тогда понятно, почему нам не удается разрешить парадокс Эпименида, — наш мозг пытается сделать нечто невозможное.

Что же это за конфликтующие физические события? Предположительно, когда вы слышите парадокс Эпименида, ваш мозг «кодирует» это предложение как внутреннюю конструкцию взаимодействующих символов. После этого он пытается классифицировать предложение как «истинное» или «ложное». В процессе этого определения некоторые символы обязательно должны взаимодействовать. (Предположительно это происходит при обработке любого предложения.) Если при этом физически прерывается процесс кодификации предложения — нечто, чего обычно не происходит, — тогда начинаются неприятности, поскольку это все равно что пытаться заставить патефон проигрывать собственную разбивальную музыку. Мы описали происходящий конфликт в физических терминах, а не в терминах нейронов. Если наш анализ правилен, то мы сможем продолжить обсуждение, когда нам станет известно, как участвуют нейроны и схемы их возбуждения в построении символов в мозгу и каким образом там «кодируются» предложения.

Этот набросок нейронного субстрата парадокса Эпименида наводит (по-крайней мере, меня) на мысль о том, что решение языковой версии парадокса Эпименида может быть подобно решению версии Тарского — то есть, что нам придется отказаться от мысли, что мозг может когда-либо с точностью представить понятие истины. Новым здесь является предположение, что полное воспроизводство истины невозможно по физическим причинам, поскольку оно включало бы физически несовместимые мозговые процессы.

ШРДЛУ

Однажды Ета Ойн заходит в лабораторию искусственного интеллекта Массачусетского Института Технологии, где она встречается с блестящей молодой программой по имени ШРДЛУ. Оказывается, что ШРДЛУ сгорает от желания найти кого нибудь кто согласился бы опробовать недавно созданное человеческое существо под названием «д-р Тире-Рвинога». ШРДЛУ объясняет, что д-р Тире-Рвинога довольно сообразителен в ограниченной области анализа бесед об игрушечной мире — мире, состоящем из кубиков разных размеров, форм и цветов. Эти кубики лежат на столе, и их можно брать и перекладывать с места на место. Ета Ойн, заинтересовавшись, начинает печатать команды для ШРДЛУ, в то время как д-р Тире-Рвинога, стоя за ее спиной, комментирует происходящее, как и было обещано.[59]

1. Ета Ойн: Возьми большой красный кубик (См. рис. 110)

ШРДЛУ: ХОРОШО

Д-р Тире-Рвинога: ШРДЛУ отвечает «хорошо», когда она выполняет команду. Чтобы взять красный кубик, ей пришлось его освободить, найдя место для зеленого кубика и положив его туда.

Перейти на страницу:

Хофштадтер Даглас Р. читать все книги автора по порядку

Хофштадтер Даглас Р. - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Хофштадтер Даглас Р.. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*