Kniga-Online.club
» » » » Десять великих идей науки. Как устроен наш мир. - Эткинз (Эткинс) Питер

Десять великих идей науки. Как устроен наш мир. - Эткинз (Эткинс) Питер

Читать бесплатно Десять великих идей науки. Как устроен наш мир. - Эткинз (Эткинс) Питер. Жанр: Математика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

На основании огромного числа наблюдений Мендель построил гипотезу. Первым ключом для него стал тот факт, что его эксперименты приводят к вариантам с простыми числовыми отношениями. Чтобы найти объяснение дискретным числам, которые получались в этих отношениях, он предположил, что различие внутри каждой пары характеристик (зеленый и желтый горох, например) обусловлено присутствием в растении различных дискретных единиц. Мендель использовал термин «элемент», чтобы обозначить дискретные целостности наследственности, и употреблял термин «характер», когда обсуждал внешний вид, фенотип своих растений. Большинство его рассуждений проводилось в терминах этих наблюдаемых характеров, и только более поздние интерпретаторы обратили внимание на роль лежащих в основании «элементов». Эти целостности тогда получали множество различных наименований, но теперь повсеместно известны под именем, которое предложил в 1909 г. датский биолог Вильгельм Людвиг Иогансен, гены. Более точно, различные версии генов, ответственные за частные фенотипы, например, ответственные за цвет гороха, называются аллелями. Так, зеленый горох и желтый горох соответствуют разным аллелям гена, ответственного за цвет гороха.

Чтобы объяснить простые числовые отношения, установленные Менделем, предположим, что гены — мы будем использовать современный термин — существуют парами, причем каждому характеру соответствует одна пара, и что каждая гамета (яйцеклетка и сперма у животных, семяпочка и пыльца у растений) содержит один из этих генов. Тогда при зачатии (опылении у растений) мужская и женская гаметы соединяются случайно и объединяют индивидуальные гены обратно в пары. Мендель разделил наследуемые характеристики на доминантные и рецессивные, и задним числом мы можем видеть, что это разделение приложимо также и к генам. Поэтому, если доминантный аллель объединится в пару с рецессивным, фенотип проявит характеристики доминантного аллеля. Например, эксперименты Менделя показывают, что аллель желтого гороха является доминантным по отношению к аллелю зеленого гороха, поскольку при скрещивании дающего правильное потомство желтого растения с дающим правильное потомство зеленым растением все потомки являются желтыми.

Можно проиллюстрировать эти идеи символически. Обозначим аллель желтого гороха буквой Y, а рецессивный аллель зеленого гороха буквой у(в элементарной генетике есть соглашение: доминантный аллель обозначается буквой, указывающей на соответствующее свойство, в данном случае на английское слово yellow, желтый, а его рецессивный двойник такой же, но маленькой, буквой). Дающие правильное потомство желтый и зеленый горох обозначаются соответственно как YYи yy. Гаметы каждого растения обозначаются соответственно как Yи y. Когда их скрещивают, потомство должно быть Yy, и весь горох будет желтым, потому что желтый ( Y) доминантен. Теперь самоопылим эти гибриды. Поскольку гамета растения Yyможет случайным образом оказаться Yили y, потомки растений Yyбудут четырех видов: YY, Yy, yYи yy. Только последний из них, yy, соответствует зеленому гороху (поскольку Yдоминантен в Yyи yY), так что растения являются желтыми и зелеными в отношении 3:1, в точности как и наблюдал Мендель. Он сумел распространить эту простую схему на другие характеристики и их комбинации (зеленый и карликовый горох, к примеру) и в каждом случае обнаружил, что ожидаемые отношения подтверждаются. (Именно здесь Фишер подверг его статистику атаке, поскольку отношения не были точными, а разброс результатов — который мог возникнуть из-за систематической ошибки, сдвига в желаемую сторону, при решении вопроса, является ли горошина со слегка неровной поверхностью гладкой или морщинистой — вызывал подозрения.)

Не всякая наследственность является менделевской, в смысле подчинения законам Менделя с простой статистикой. Возможно, наихудший совет в истории экспертных советов был дан немецким ботаником Карлом Вильгельмом фон Нэгели из Мюнхенского университета, который не понял аргументов Менделя и предложил ему переключить свое внимание с гороха на ястребинку (Hieracium). Но ястребинка размножается путем соматического партеногенеза (т.е. неполовым путем), и едва ли есть что-либо менее подходящее для демонстрации менделевской наследственности. Мендель, должно быть, несколько приуныл, когда его опыты с ястребинкой привели в никуда и определенно не подтверждали его идеи. Он также был подавлен результатами опытов с бобами (Phaseolus), в которых так много генов отвечают за характеристики, которые он наблюдал, что ожидаемые им простые отношения, такие ясные для гороха Pisum, оказались скрытыми.

Существуют и более тонкие причины, по которым не вся половая наследственность является менделевской, так как некоторые гены сцеплены с другими, и наследование определенных пар характеристик не является случайным. Более того, многие гены плейотропны, в том смысле, что они управляют более чем одной чертой фенотипа, и организм не является взаимно однозначным отображением характерных черт в гены. Например, мутация фруктовой мушки Drosophila, героини многих генетических штудий, приводит к недостатку пигментации ее сложных глаз и ее почек (Malpighian tubules); в другой мутации не только крылья вытягиваются в стороны, но мушка также теряет несколько волосков по бокам. Даже статистика правильной менделевской наследственности может затеняться вторичными эффектами. Например, бесхвостая кошка имеет ген, назовем его t, который мешает нормальному развитию позвоночника у Ttкошек и дает в результате знакомый бесхвостый фенотип; но если дать кошке двойную дозу этого аллеля, она становится нежизнеспособной, эмбрионы ttумирают. «Самоопыляющиеся» Ttкошки дадут поэтому в потомстве, способном к появлению на свет TT, Ttи tTв отношении 1:2, вместо ожидаемого 1:3. [6]

Эта работа отдыхала тридцать пять лет, пока ее не откопали и с неохотой признали при, возможно, несколько темных обстоятельствах, о которых мы упомянули выше. Но пока наблюдения Менделя крепко спали, биология путешествовала по другой дороге, которой суждено было раствориться в них.

Заслуживающий цитирования немецкий биолог Эрнст Геккель (1834-1919) придумал для нас термин филогения, означающий эволюционную историю вида, и предположил, что «филогения повторяет онтологию», где онтологияесть развитие индивида. Он имел в виду, что превращения, которым подвергается эмбрион при развитии в матке, являются ускоренной версией эволюции вида. Он также сделал предположение, имевшее чудовищные последствия через двадцать лет после его смерти, что политика представляет собой прикладную биологию. Более уместно для текущего обсуждения предположение, сделанное им в 1868 г., о том, что ядра биологических клеток содержат информацию, которая управляет наследственностью. Немецкий эмбриолог Вальтер Флеминг дал новый импульс этому предположению, когда в 1882 г. обнаружил, что ядра клеток личинки саламандры содержат крошечные стержнеподобные структуры, которые могут окрашиваться путем поглощения определенных красителей. Основываясь На этих наблюдениях, Вильгельм фон Вальдейер в 1889 г. предложил название хромосома(«окрашенное тело»). [7]

Число хромосом в ядрах клеток, как известно, трудно сосчитать, поскольку они сплетаются, расплетаются и расползаются по ядру, пока оно не подвергнется делению, и тогда они начинают удваиваться и делиться. Животные, которых мы считаем малыми, а заодно и растения, обычно имеют меньше хромосом, чем мы: у нас их двадцать три пары, а у домовой мыши только двенадцать. Томаты, однако, имеют двадцать две, а картофель, к нашему стыду, двадцать четыре. И действительно, подсчет так труден, что долгое время число хромосом у человека считали таким же, как у шимпанзе (двадцать четыре пары); и только проглотив свою гордыню и признав, что число хромосом не связано с самоуверенным восхищением собой, мы смогли принять правильное число, двадцать три. [8]

Перейти на страницу:

Эткинз (Эткинс) Питер читать все книги автора по порядку

Эткинз (Эткинс) Питер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Десять великих идей науки. Как устроен наш мир. отзывы

Отзывы читателей о книге Десять великих идей науки. Как устроен наш мир., автор: Эткинз (Эткинс) Питер. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*