Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рациональность и численность естественно рождают компьютеры, автоматы, роботов, следовательно…
Компьютеры изоморфны формальным системам. Значит…
Любой компьютер, чтобы быть таким же умным, как человек, должен быть способен понимать теорию чисел так же хорошо, как люди, значит…
Среди прочего, он должен знать примитивно рекурсивную арифметику. Но именно поэтому…
Он ловится на Гёделев «крючок», из чего следует, что…
Мы, с нашим человеческим интеллектом, можем вывести некое истинное утверждение теории чисел, истинность которого компьютер не в состоянии заметить (то есть, компьютер никогда не выведет этого утверждения) именно из-за Гёделева аргумента, действующего как бумеранг.
Из этого следует, что существует нечто, что невозможно запрограммировать на компьютерах, но что люди способны сделать. Значит, люди умнее.
Насладимся же, вместе с Лукасом, преходящим моментом антропоцентрической славы:
Какую бы сложную машину мы не сконструировали, она, будучи машиной, будет соответствовать формальной системе, которая, в свою очередь, будет подвержена Гёделевой процедуре нахождения формулы, недоказуемой в данной-системе. Эту формулу машина не в состоянии будет вывести в качестве истинной, хотя разум может установить ее истинность. Таким образом, машина все еще не будет адекватной моделью разума. Мы пытаемся создать механическую модель мозга — «мертвую» модель — но разум, будучи «живым», может всегда пойти на шаг дальше любой формализованной, окостеневшей, мертвой системы. Благодаря теореме Гёделя, за разумом всегда остается последнее слово.[43]
На первый взгляд (и, может быть, даже после детального анализа), доводы Лукаса кажутся убедительными. Обычно они вызывают противоположные реакции. Некоторые ухватываются за них, почти как за религиозное доказательство существования души, в то время как другие просто отмахиваются от них, как от недостойной внимания чепухи. Мне кажется, что, хотя эти доводы ошибочны, они настолько интересны, что стоит потратить некоторое время на их опровержение. На самом деле, это было одной из основных причин, по которой я стал думать над проблемами, затронутыми в этой книге. Я попытаюсь опровергнуть доводы Лукаса одним способом в этой главе и другими способами в главе XVII.
Мы должны попробовать глубже понять, почему Лукас говорит, что компьютер невозможно запрограммировать так, чтобы он «знал» столько же, сколько люди. Его идея заключается в том, что мы всегда находимся вне системы, и что извне мы можем проделать «Геделизирующую» операцию, в результате дающую нечто, что мы, глядя извне, можем идентифицировать как истинное, но что не может быть интерпретировано как таковое изнутри системы. Но почему нельзя запрограммировать в качестве третьего главного компонента программы «Геделизирующий оператор», как Лукас его называет? Лукас объясняет:
Гёделева формула строится при помощи стандартной процедуры — только так мы можем быть уверены, что ее можно будет построить в любой формальной системе. Не если это стандартная процедура, то почему ее нельзя добавить к программе? Это соответствовало бы системе с дополнительным правилом вывода, позволяющего добавить к ней в качестве теоремы Геделеву формулу остальной системы, затем — Геделеву формулу получившейся при этом новой, более мощной формальной системы, и так далее. Это было бы равносильно добавлению к первоначальной формальной системе бесконечной цепочки аксиом, каждая из которых являлась бы Гёделевой формулой системы, полученной таким образом… Можно ожидать, что человек, столкнувшийся с машиной, обладающий Гёделевым оператором, принял бы этот факт во внимание и смог бы пере-Гёделить этот новый аппарат вместе с его Гёделевым оператором. В действительности, так и получается. Даже если мы добавим к формальной системе бесконечный ряд аксиом, состоящих из последовательных Гёделевых формул, получающаяся система все еще остается неполной, так как в ней будет недоказуемая в данной системе формула. Однако разумное существо, стоящее вне системы, видит, что эта формула истинна. Этого мы и ожидали, поскольку, даже если мы добавим бесконечный ряд аксиом, они должны быть определены с помощью некоего конечного правила, которое затем может быть учтено разумом, анализирующим расширенную формальную систему. В некотором роде, поскольку за разумом остается последнее слово, он может всегда обнаружить дыру в любой формальной системе, выдаваемой за его модель. Механическая модель должна быть в каком-то смысле конечной и определенной, следовательно, разум всегда окажется более гибким.[44]
Перепрыгивая измерением вышеОбраз, который мы находим у Эшера, помогает нам лучше понять эту идею; речь идет о его «Драконе» (рис. 76). Основная тема в нем, разумеется, — это дракон, кусающий себя за хвост, со всеми Гёделианскими ассоциациями, которые это вызывает. Но в этой картине есть и более глубокий смысл. Сам Эшер написал по этому поводу очень интересные комментарии. Первый комментарий касается серии рисунков, в которых Эшер исследовал конфликт «между плоскостью и трехмерным пространством»; второй комментарий — собственно о «Драконе»:
I. Наше трехмерное пространство — это единственная известная нам реальность. Двумерность точно так же фантастична для нас, как и четырехмерность, поскольку в нашем мире ничто не плоско по-настоящему, даже поверхность тщательнейшим образом отполированного зеркала. И все же мы держимся за идею, что стена или лист бумаги на самом деле плоские, — и интересно то, что мы продолжаем, с незапамятных времен, производить иллюзии пространства на этих самых плоских поверхностях. Не абсурдно ли нарисовать несколько линий и назвать это «домом»? Эта странная ситуация — тема следующих пяти рисунков [включая «Дракона»].[45]
II. Как бы этот дракон не пытался стать трехмерным, он остается совершенно плоским. На бумаге, на которой он нарисован, прорезаны два отверстия. Затем она сложена так, что получаются два квадратных «окошка». Но этот дракон упрям, и несмотря на свою плоскостность, он настаивает на том, что он трехмерен — поэтому он просовывает голову в одно из отверстий, и хвост — в другое.[46]
Этот второй комментарий очень важен. Эшер имеет в виду то, что как бы мы не исхитрялись, пытаясь выразить три измерения в двух, при этом всегда теряется некая «основная сущность трехмерности». Дракон изо всей силы пытается побороть свою двумерность. Он пробует сделать это, высовывая голову из бумаги, на которой, как ему кажется, он нарисован — но мы, находящиеся вне рисунка, видим, насколько тщетны его усилия, поскольку и дракон, и дырки, и складки — всего лишь двумерные изображения соответствующих понятий, и не одно из них не является реальным. Но дракон не может выйти из своего двумерного пространства и не может, подобно нам, этого увидеть.
На самом деле, можно пойти еще дальше. Мы можем вырвать эту картинку из книги, сложить ее, прорезать в ней дырки, вывернуть ее наизнанку, и сфотографировать результат — и она снова станет двумерной. То же самое можно повторить и с фотографией. Каждый раз, когда изображение становится опять двумерным — как бы хитроумно мы не симулировали на нем трехмерность в двух измерениях — оно снова может быть разрезано и сложено.
Имея в виду эту замечательную Эшеровскую метафору, вернемся к программам и людям. Мы говорили о попытке ввести «Геделизирующий оператор» в саму программу. Но даже если бы мы написали программу, выполняющую эту операцию, она не уловила бы сути Гёделева метода. Мы снова можем, находясь вне системы, уничтожить ее методом, ей самой недоступным. Однако позвольте: являются ли наши доводы аргументами за или против идеи Лукаса?
Рис. 76. М. К. Эшер «Дракон» (гравюра на дереве, 1952)
Пределы разумных системПротив Сам факт, что мы не можем написать программу, способную на «Гёделизирование», заставляет нас подозревать, что мы и сами не всегда на это способны. Одно дело — абстрактно аргументировать, что Гёделизирование возможно, и совсем другое дело — знать, как проделать эту операцию в каждом конкретном случае. На самом деле, по мере того, как сложность формальных систем (или программ) возрастает, наша способность «Геделизировать» начинает ослабевать. Это естественно, поскольку, как мы только что выяснили, у нас нет алгоритма, описывающего этот процесс. Если мы не можем объяснить, как применить метод Гёделя в каждом отдельном случае, то для каждого из нас рано или поздно наступит такой момент, когда, столкнувшись со слишком сложным случаем, мы не сможем сообразить, что делать.