Kniga-Online.club
» » » » Морис Клайн - Математика. Утрата определенности.

Морис Клайн - Математика. Утрата определенности.

Читать бесплатно Морис Клайн - Математика. Утрата определенности.. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

134

Шекспир В. Избранные произведения. — М. — Л.: ГИХЛ, 1950, с. 581 (перевод М.Л. Лозинского).

135

Огюст Конт (1798-1857) — видный французский философ, один из основоположников и бесспорный лидер позитивизма, утверждающего, что целью науки являются наблюдение и эксперимент, а также формулировка тех выводов, которые прямо отсюда следуют. Конту принадлежит идея о естественной иерархии наук в направлении уменьшения их абстрактности; при этом при построении любой науки должны быть известны основные факты всех предшествующих ей наук. Эта «лестница Конта» начиналась с математики (являющейся, таким образом, фундаментом любого знания) и заканчивалась социологией (термин, впервые введенный Контом).

136

Исчисление предикатов первой ступени, как доказали Гильберт и другие, непротиворечиво, и аксиомы его независимы.

137

 Теорема Гёделя о неполноте применима и в случае обращения к исчислению предикатов второй ступени (гл. VIII). [По поводу теорем Гёделя см., например, [81], а также обращенные к более широкому кругу читателей статью [82] и брошюру [83]. — Ред.]

138

Доступное изложение теоремы Гёделя и некоторых других упомянутых ниже понятий и результатов имеется в небольшой по объему и требующей минимальной предварительной подготовки книге [84].

139

Разумеется, это утверждение автора не означает, что ранее Гёделя математики не знали неполных аксиоматических систем, в которых вполне осмысленное в рамках этой системы утверждение не может быть ни опровергнуто, ни доказано «подобно тому как, скажем, дополнив стандартную аксиоматику теории групп требованием (аксиомой) о конечности группы, мы все равно не сможем ответить на вопрос о том, четен или нечетен порядок (число элементов) группы. [Н. Бурбаки — см., например, [68] — считает даже, что единственным принципиальным отличием современной математики от античной является признание равноправности неполных аксиоматических систем с полными, в то время как древние греки признавали лишь полные аксиоматические «системы вроде (до конца ими не аксиоматизированных) евклидовой геометрии или системы вещественных чисел. Возможно, первой сознательно рассмотренной математиками неполной аксиоматической системой была абсолютная геометрия Я. Бойаи, получающаяся из обычной аксиоматики евклидовой геометрии отбрасыванием аксиомы параллельных; в рамках этой аксиоматической системы, описывающей, так сказать, «общую часть» евклидовой и гиперболической геометрии, нельзя было ответить, скажем, на вопрос, проходит ли через внешнюю по отношению к прямой a точку А одна или много не пересекающих a прямых.] Однако ранее математики, впрочем, обычно не формулируя этого утверждения явно, полагали, что любую неполную аксиоматику можно дополнить какими-то новыми аксиомами, с тем чтобы она стала полной; работы же Гёделя совсем по-новому поставили вопрос о том, что есть в математике истина.

140

Обычная математическая индукция доказывает, что теорема верна для всех конечных положительных целых чисел. Трансфинитная индукция использует тот же метод, но распространяет его на вполне упорядоченные множества трансфинитных ординальных чисел.

141

Доступен и начинающему рассказ [88] о работе Ю. Матиясевича; несколько больших знаний требуют комментарии к 10-й проблеме Гильберта в [51] (освещение ситуации, какой она представлялась до решения проблемы) и в [89], где статья о 10-й проблеме Гильберта, принадлежит основным участникам ее решения М. Девису, Ю. Матиясевичу и Дж. Робинсон. (Видный логик Джулия Робинсон, заложившая первые камни в основание построенного Матиясевичем здания, является сестрой создателя нестандартного анализа Абрахама Робинсона (см. далее), Мартин Девис — автор одного из лучших учебников нестандартного анализа [86].

142

Обобщенная гипотеза континуума утверждает, что кардинальное число множества всех подмножеств некоторого множества, обладающего кардинальным числом Nn, равно Nn+1 (т.е. 2Nn = Nn+1). Кантор доказал, что 2Nn > Nn.

143

Помимо статьи [17]*, рассчитанной на самую широкую аудиторию, можно назвать обстоятельную книгу [90] и обзор [91].

144

В теории групп аксиома коммутативности умножения не зависит от остальных аксиом группы. Существуют модели группы, удовлетворяющие аксиоме коммутативности (например, обычные положительные и отрицательные числа); другие же модели (скажем, кватернионы) аксиоме коммутативности не удовлетворяют.

145

В некоторых более ранних работах «доказывалось», что аксиоматические системы, положенные в основу той или иной области математики, категоричны, т.е. что все интерпретации любой из таких аксиоматических систем изоморфны — совпадают по существу и отличаются лишь терминологией. Но такого рода «доказательства» были нестрогими, поскольку строились на логических принципах, недопустимых в метаматематике Гильберта, и, кроме того, прежде аксиоматические основы не формулировались столь тщательно, как теперь. Ни одна система аксиом, несмотря на «доказательства» Гильберта и других авторов, не является категоричной.

146

Грубо говоря, аксиоматика «гипервещественных» чисел R* получается из аксиоматики вещественных чисел R («укороченный» вариант последней, включающей все необходимое для построения аналитической геометрии, содержится в книге [92], а более полные ее варианты — во многих учебных пособиях, например, [93] или [94]) прибавлением «отрицания аксиомы Архимеда», которому можно придать следующую форму: существует такое число ε («бесконечно малое число»), что ε > 0 и ε < 1/n при любом натуральном n. Следствием этой аксиомы и других аксиом, постулирующих свойства действий (сложение, умножение) над числами, являет довольно сложная структура «гипервещественной прямой» R*; впрочем, для использования бесконечно малых в (поставленных А. Робинсоном на твердую почву) рассуждениях детальное значение структуры R* вовсе не обязательно.

147

Доказательства Кантора и Пеано корректны, если использовать, обычное аксиоматические свойства вещественных чисел. Единственное свойство, которые необходимо изменить, чтобы гипервещественные числа стали возможными, — это аксиома Архимеда, о которой мы уже неоднократно упоминали. Система гипервещественных чисел R* неархимедова в обычном смысле слова. Но она становится архимедовой, если включить в систему гипервещественных чисел бесконечные кратные гипервещественного числа a*.

148

Например, в нестандартном анализе отношение бесконечно малых dy/dx существует в системе R* и для y = x2 отношение dy/dx равно 2x + dx, где dx — бесконечно малая, т.е. dy/dx — гипервещественное число. Производная функции y = x2 — это обычная вещественная часть гипервещественного числа dy/dx, т.е. (вещественное) число 2x. Аналогично определенный интеграл в нестандартном анализе есть сумма бесконечно большого числа бесконечно малых (число слагаемых — гипервещественное натуральное число).

149

Сегодня уже существуют задачи, которые удалось решить лишь с использованием нестандартного анализа; правда, видимо, все эти задачи можно было бы решить и традиционными методами, но в таком случае решения были бы, вероятно, значительно более сложными. Вообще, нестандартный анализ надо рассматривать не как новую область математики, а скорее лишь как еще один математический «язык», идущий от Лейбница, но лишь в наши дни ставший равноправным, скажем, с «ε-δ-языком» Коши. При этом язык нестандартного анализа оказывается весьма удобным и естественным в ряде прикладных задач (см., например, [87]; ср. со сказанным в тексте об использовании «бесконечно малых величин» физиками и техниками); ряд преподавателей высшей школы (например, в нашей стране Μ.Μ. Постников) высказывает убеждение в педагогических достоинствах этой модификации лейбницевского «исчисления дифференциалов» при изложении основ «высшей математики» начинающим (ср. [95], [96]).

Перейти на страницу:

Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*