Kniga-Online.club
» » » » Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Читать бесплатно Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

В теоретической астрономии и физических науках процедура точно такая же. Земля, которую мы населяем и знаем благодаря нашим ощущениям, – не идеальная планета, которой она представляется в механике небесных тел. Она покрыта глубокими океанами и испещрена горными системами. Эта планета, которую учитывают в расчетах возмущений Солнечной системы, является как безразмерной частицей, наделенной массой и положением, так и гладкой без особых примет сферой, слегка покачивающейся относительно своих полюсов. И хотя солнце и планеты Солнечной системы идеализируются подобным образом, орбиты комет рассчитываются с такой точностью, что возврат перигелия кометы Галлея в 1910 году после ее отсутствия в течение примерно 75 лет был предсказан с погрешностью только в 3,03 дня – около 1 из 9125.

В настоящее время все сказанное настолько хорошо знакомо, что нас можно извинить, если мы посчитаем это явно граничащим с трюизмом. Но всякий, кому и дальнейшее покажется очевидным, является либо гением, либо просто равнодушным человеком. Просто чудесно, что идеальный мир математиков или ученых-теоретиков должен время от времени предсказывать существование непредвиденных событий «реального» мира.

Приведу известный пример такого предсказания. Положение планеты Нептун за пределами возможностей человеческого глаза было предсказано (в 1846 году) путем математических расчетов на основе закона всемирного тяготения Ньютона, и телескоп обнаружил планету очень близко к расчетному месту. Или более свежий пример (1927). Современная физика и математика на основе квантовой теории предположила существование двух видов молекул водорода, ортоводорода и параводорода, о которых химики даже не догадывались. Более того, их соотношение (3/4 и 1/4) в «водороде» совпало с расчетными. Как можно объяснить подобные предсказания?

Объяснений было представлено много, даже слишком много, чтобы предположить, что хоть одно окажется убедительным. Только самое позднее из них (1930) следует рассмотреть в данной работе, как наиболее уместное относительно магии чисел, благодаря древней истории которой и появилось на свет. Человеческий разум должен предполагать результат любого научного эксперимента до того, как опыт будет произведен, потому что можно осознавать и рассуждать последовательно только при одном условии, математическом подходе, и, более того, математические истины бессмертны. Заявлено слишком жестко, но не слишком пристрастно, как в большинстве революционных научных кредо ученых последних трех столетий. Нечто подобное уже произносилось, к этому возвращались много раз и в самых разных формах, с VI века до н. э. и вплоть до наших дней.

Некоторые математики чувствуют необходимость подчинения неизбежности. Возникает ощущение, будто их открытия и находки ожидали их в неизвестном, но вполне узнаваемом будущем. Рационалист сказал бы, что математик проектирует себя в иллюзорное время своего собственного изобретения. Будущее, в которое, как ему представляется, он проникает, на самом деле есть его собственные настоящие абстракции и доказательства – плоти и духа математики. Постоянство и универсальность математики основываются на ее абстрактности, очевидной необходимости или «обреченности» как сопутствующей строгости формальной логики.

Всеми, кто верит, что математика и логика есть плоды человеческого сознания, и необходимость и универсальность воспринимаются лишь как преходящие признаки. Сторонники теории о том, что числа были скорее найдены, чем изобретены, обнаруживают в математике бесспорное доказательство существования высшего и вечного разума, наполняющего вселенную. Первые чтут в математике гибкость и способность меняться, последние видят в математике откровение постоянства в бесконечности пространства, все несовершенство которого вносится лишь неадекватностью человеческого восприятия. По мере продвижения в направлении более ясного осознания бесконечности несовершенство пропадет, и математика засияет ярче, как безупречное олицетворение вечной истины.

Первые признаки того, что в VI веке до н. э. появление подобного учения было вполне разумно и возможно, видны на примере полудюжины простых утверждений о прямых линиях и окружностях; и, как гласят предания, Фалес некоторые из них даже доказал. Если прямая линия проходит через центр окружности, она делит окружность на две равные во всех отношениях части.

Или, например, если две стороны треугольника равны, то углы, противоположные равным сторонам, тоже равны. Эти два утверждения подтверждаются при начертании соответствующих фигур, и точно так же очевидна правота другого утверждения: если две прямые линии пересекаются, противоположные углы в точке пересечения попарно равны. Просто внимательно взглянув на чертеж, видим «истину» данного утверждения в геометрии. А если еще немного поразмышляем, то «увидим», что данные выводы не проистекают из каких-либо чисел, которые можно было бы «притянуть» к этому, но, по-видимому, сохраняют справедливость по отношению к любой окружности, любому равнобедренному треугольнику, любой паре пересекающихся прямых линий, которые только в состоянии представить человек. И это означает, что в своей области эти «утверждения» универсальны. Почему? Кто-то скажет, что это вопрос терминологии. Другие найдут утешение в утверждении, что «универсальность» абстрактных линий – это проявление высшего разума.

Четвертое утверждение практически равнозначно: если четырехугольник вписан в окружность, каждая из его диагоналей проходит через центр окружности. Этот вывод, надо признать, не производит сильного впечатления. Но, поданный в иной равнозначной формулировке, он становится, по признанию многих, самой красивой теоремой элементарной геометрии: угол, вписанный в полуокружность, есть прямой угол. Инвариантность, неизменность угла, вне зависимости от места вершины угла на полуокружности, восхищала Данте.

Каждое из приведенных четырех утверждений становится интуитивно очевидным, что явствует в процессе исследования простой фигуры, вроде тех, что ребенок играючи способен нарисовать на поверхности. Все четыре могли быть известны задолго до VI века до н. э., когда впервые в истории их внимательно рассмотрели, но не глазами безучастного ребенка, а пристальным взглядом мудрого человека.

Подобно многим, видевшим справедливость данных утверждений, Фалес также полагал, что очевидность эта интуитивная в смысле видимой «истины». Далее, вполне вероятно, он стал сомневаться в неизбежности столь простых истин в геометрии. Что мы подразумеваем, когда говорим: утверждение о фигуре, составленной из прямых линий, справедливо? Если Фалес и не так формулировал вопрос самому себе или никак его не формулировал, дальнейшее его поведение свидетельствует, что он все-таки сомневался. О действиях Фалеса нам придется судить по записям греческих историков, составивших эти записи много позже того времени, когда Фалеса уже не волновали проблемы прямых линий и окружностей. Историки немногословны, вплоть до неясности, но важно, что именно Фалес ввел абстракцию и доказательства в изучение линий как прямых, так и изогнутых. Доказательство придало значимость справедливости утверждений, как только оно появилось в геометрии. И позволило Платону и его ученикам вообразить, будто они дали смысл доказательству.

Геометрия Египта и Вавилонии еще не оторвалась от своих сугубо утилитарных корней, когда Фалес привез ее в Грецию. Она продолжала в основном заниматься эмпирическими правилами исчисления площадей и объемов.

Предположение о паре равных углов, созданных двумя пересекающимися прямыми линиями, едва ли пришло бы в голову практичным умам, занятым строительством пирамид и рытьем каналов. И все же это предположение часто требуется при доказательстве других предположений, которые ни очевидны, ни бесполезны. Это справедливо и для идеальных абстрактных линий в геометрии, не предназначенных для простых практичных умов, которые не воспринимают их серьезно. В переходе от конкретики чувственного опыта к абстракции идеальных конструкций Фалес совершил прорыв в вечность, опередив своих современников на тысячи лет и целую вселенную.

Вторым его столь же эпохальным деянием стало предположение о том, что некоторые абстракции геометрических фактов, выявленных обычным наблюдением, могут быть выведены из абстракций фактов простейшего уровня, но того же рода. Как утверждают, он «доказал» некоторые из своих теорем «ощутимым», «интуитивным» или «чувственным» методом египтян, говоря: «Я так вижу». Другие же теоремы, и в этом кардинальное отличие для развития науки, математики и философии, он, по описанию, «доказал», или попытался прийти к доказательству «абстрактным», «обобщенным» или «универсальным» методом классических греческих математиков. Вольное толкование последних оправдано обстоятельствами, при которых это было сделано. Адресованы тексты были греческим математикам, жившим много позже Фалеса. Для этих людей греческий метод доказательства означал только прямые дедуктивные рассуждения.

Перейти на страницу:

Эрик Белл читать все книги автора по порядку

Эрик Белл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Магия чисел. Математическая мысль от Пифагора до наших дней отзывы

Отзывы читателей о книге Магия чисел. Математическая мысль от Пифагора до наших дней, автор: Эрик Белл. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*