Kniga-Online.club

Флатландия. Сферландия - Эдвин Эбботт

Читать бесплатно Флатландия. Сферландия - Эдвин Эбботт. Жанр: Математика / Научная Фантастика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Название:
Флатландия. Сферландия
Дата добавления:
22 март 2024
Количество просмотров:
14
Возрастные ограничения:
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн
Флатландия. Сферландия - Эдвин Эбботт
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего согласия.
Напишите нам, и мы в срочном порядке примем меры.

Флатландия. Сферландия - Эдвин Эбботт краткое содержание

Флатландия. Сферландия - Эдвин Эбботт - описание и краткое содержание, автор Эдвин Эбботт, читайте бесплатно онлайн на сайте электронной библиотеки kniga-online.club

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.
Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.

Флатландия. Сферландия читать онлайн бесплатно

Флатландия. Сферландия - читать книгу онлайн, автор Эдвин Эбботт
Назад 1 2 3 4 5 ... 95 Вперед
Перейти на страницу:

Предисловие

Многомерные пространства давно утратили тот ореол таинственности, которым они были некогда окутаны. Идеи и методы многомерной геометрии (причем не только евклидовой, но и неевклидовой) находят ныне столь широкое применение, что трудно понять, как наши предки могли обходиться без них. К услугам многомерной геометрии прибегают химик, исследующий свойства многокомпонентных систем, и физик, пытающийся выяснить отдельные подробности поведения многих тел (трудности проблемы n тел столь велики, что вынуждают говорить о «многих телах» всякий раз, когда n ≥ 3), астроном и биолог. Проектировщик машин, создавая зубчатую передачу с большим числом шестерен, также вынужден будет воспользоваться методами многомерной геометрии, если хочет, чтобы его творение не просто соответствовало назначению, а выполняло свою функцию (в том или ином смысле) оптимально.

Четырехмерное евклидово пространство, ближайшего по размерности соседа привычного нам трехмерного пространства, постигла та же участь, что и другие многомерные пространства: оно утратило былую экзотичность и стало привычным инструментом в руках современного исследователя.

Четырехмерный мир — далеко не самое удивительное из того, что создано математической мыслью. Пытаясь найти ответы на внешне простые, но в действительности необычайно глубокие вопросы, математики совершили немало удивительных открытий. Они узнали, что существует не одна, а несколько геометрий, что размерность геометрической фигуры нельзя определять по такому интуитивно очевидному признаку, как «запас» принадлежащих фигуре точек, поскольку, например, множество точек, составляющих отрезок, равномощно множеству точек, составляющих квадрат или куб (иначе говоря, отрезок содержит «столько же» точек, сколько их содержит квадрат или куб), что размерность пространства не обязательно должна быть конечной и даже целой.

Не следует думать, будто столь странное па первый взгляд понятие, как нецелая размерность, является своего рода математическим курьезом и не имеет отношения к действительности.

Как доказывается в механике, простейшая из задач N тел — задача трех тел — приводит к необходимости рассматривать пятимерное пространство, а при произвольном N ≥ 3 — пространство с числом измерений, равным 3N − 4. Но почему нельзя считать N нецелым? Что мешает нам, например, говорить о π-мерном мире? Формулы n-мерной геометрии нам удается без особых ухищрений распространить на случай n = π. Но самое главное состоит в том, что представление о нецелых размерностях оказывается весьма эффективным в теории фазовых переходов и теории ноля. При рассмотрении некоторого процесса в системе с огромным числом частиц (или степеней свободы) может оказаться, что со временем в него вовлекаются все новые и новые частицы (участвует все большее число степенен свободы). Поэтому и число переменных, которые приходится учитывать в уравнениях, меняется со временем. Быть может, число переменных удобно считать не дискретной, как обычно, а непрерывной величиной. Тут-то и появляются пространства размерности π, √2 и 1,879. Правда, трудно сказать, понадобится ли кому-нибудь рассматривать треугольник в π-мерном пространстве и нужно ли выяснять, чему равна сумма его углов. Возвращаясь из π-мерного пространства в «обычное» 4-мерное, невольно испытываешь большое облегчение — настолько все становится простым и понятным!

Изучать многомерные, и в частности четырехмерные, пространства можно по-разному. Ничто не мешает, например, воспользоваться аксиоматическим методом, неоднократно доказавшим свою мощь, тем более, что, по словам известного геометра Г. С. М. Кокстера, «аксиоматический подход рассеивает таинственность, не уменьшая очарования самой идеи».

Однако для первого знакомства с четырехмерным миром нам кажется более подходящим метод аналогии. Основываясь на наглядно-геометрических представлениях о размерности геометрических фигур, мы можем совершать постепенное восхождение по шкале размерностей и переходить от одномерных фигур к двумерным, от двумерных — к трехмерным и, наконец, сделать решающий шаг: воспользоваться замеченными закономерностями и перейти к рассмотрению четырехмерных фигур. Таков обычный путь использования аналогии — лестницы, ведущей от известного к неизвестному и позволяющей не только овладевать накопленными знаниями, но и открывать новое. Менее традиционное применение аналогии состоит в том, что мы мысленно пытаемся представить себе трудности, с которыми сталкивается двумерное существо при попытке наглядно вообразить себе третье измерение, и экстраполируем свое превосходство над обитателем двумерного мира… на самих себя!

Именно этот не совсем обычный способ изучения (или, лучше сказать, «постижения») геометрии четырехмерного евклидова пространства и искривленного расширяющегося пространства избрали авторы «Флатландии» и «Сферландии»: английский педагог Эдвин Э. Эбботт и голландский ученый Дионис Бюргер. Написанные в разное время различными авторами и на разных языках, эти произведения объединены не только преемственностью тематики, но и «родственными узами» героев, от лица которых ведется повествование. Если у Эбботта в роли рассказчика выступает Квадрат, то у Бюргера его сменяет Шестиугольник, который доводится Квадрату пнуком. Мир, в котором живет Шестиугольник, устроен гораздо сложнее евклидовой плоскости его деда: этот мир искривлен (Шестиугольник обитает на поверхности огромной сферы) и к тому же расширяется. В этом различии — отзвук великих перемен в воззрениях на природу реального пространства, происшедших с выхода и свет первого издания «Флатландии» A880 г.) до появления «Сферландии» A957 г.). Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали произведения Эбботта и Бюргера необычайно популярными. Их (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.

Не следует думать, будто произведения Эбботта и Бюргера, столь разительно отличающиеся от обычных «курсов», «введений» и «популярных очерков», служат своего рода четвертым измерением, «перпендикулярным» всей прочей литературе но занимательной математике. Яркие и самобытные, эти книги преследуют ту же цель, что и их «трехмерные» (то есть более привычные по форме) сородичи по жанру: учить математике так, как постигают мир дети, — играя. Именно общность цели в гораздо большей степени, чем сходство тех или иных особенностей изложения, роднит «Флатландию» и «Сферландию» с произведениями таких мастеров этого жанра, как Кэррол, Гарднер и Штейнгауз, уже известными нашему читателю.

Вместе с тем нельзя не отметить, что во Флатландии, и даже в Сферландии, с точки зрения физики не все обстоит благополучно. На первый взгляд кажется, что обитатели двумерия действительно не могут ничего узнать о существовании третьего измерения. Уступая искусству авторов, читатели склонны согласиться и с тем, что четвертое измерение, возможно, существует, но просто недоступно нашему непосредственному восприятию.

Все это правильно лишь до тех пор, пока речь идет о геометрии и о механике. (Кстати, говоря об измерении расстояний при помощи света, автор «Сферландии» действует в приближении геометрической оптики: свет распространяется в виде «лучей», а не «волновых фронтов»!) Прямая «выглядит» одинаково и в двух, и в трех измерениях, и по траектории материальной точки нельзя определить размерность

Назад 1 2 3 4 5 ... 95 Вперед
Перейти на страницу:

Эдвин Эбботт читать все книги автора по порядку

Эдвин Эбботт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Флатландия. Сферландия отзывы

Отзывы читателей о книге Флатландия. Сферландия, автор: Эдвин Эбботт. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*