Виталий Ларичев - Мудрость змеи: Первобытный человек, Луна и Солнце
18 тропических лет, составляющих простой сарос 3 = 54 года,
19 драконических лет, составляющих простой сарос 3 = 57 лет.
Отсюда следует, что размещенные друг над другом спирали 54 и 57 правой периферии пластины представляют собой своеобразную запись превосходно известного в календарно-астрономических расчетах равенства:
Палеолитическая формула равенства записей большого сароса при тропическом и драконическом исчислениях времени по лункам правой периферии пластины.
54 тропических года и 33 (или 32) дня = 57 драконических лет (с ничтожной разницей в пределах 1,272—2,272 суток).
Что касается 33(32) суток, которыми должно быть завершено счисление 54 тропических лет для выравнивания их со временем 57 драконических лет, то просчет их мог осуществляться следующим образом: после прохода по лункам змеевидной линии 11 счисление производилось по лункам внешнего витка центральной спирали. В таком случае участок сближения последних с лунками нижнего отдела спирали 57 + 1 точно отметит эти сутки. Иной вариант равенства при том же условии (каждая лунка равна одному тропическому или драконическому году) отражают структуры левой периферии пластины. Как удалось установить в ходе расшифровки, они с наибольшей вероятностью представляют орнаментально-числовую запись, в которой добавочные сутки прибавлялись не к тропическим, а к драконическим годам. В самом деле, если 59(45 + 14) тропических лет = 62 драконических года + 58,838 суток, то в записи на пластине это выглядит следующим образом:
Формула равенства записей при тропическом и драконическом исчислениях времени по лункам левой периферии пластины.
Недостающие в правой части равенства 58,838 суток рациональнее всего счислять по спирали 57 + 1 правой периферии пластины.
Противоположная направленность витков в двойных спиралях левой и правой периферий композиции — 62 и 57+1 в данном случае семантически призвана отразить разную значимость знака — в первой каждая лунка обозначает один драконический год, а во второй — одни сутки. Иначе говоря, разная направленность витков в спиралях формулы есть знаковая математическая условность, определяющая в орнаментально-числовой записи пластины календарно-астрономическую весомость лунок в каждой из этих спиралей. Это различие подчеркивается к тому же размещением по левую и правую стороны от спирали центральной. Если к сказанному добавить, что в представленных выше формулах спирали драконических лет 57 и 62 размещаются в нижнем отделе периферии пластины, а спирали тропических лет 54 и 14 + 45 располагаются в верхнем отделе ее, то становится ясным, что приуроченность отдельных структур орнаментальной композиции мальтинской пластины к периферии или центру, к левой или правой окраине ее, к верхнему или нижнему отделам приобретает исключительную семантическую значимость, требующую учета при реконструкциях как календарно-астрономических, так и мифолого-космогонических и космологических.
После анализа формул-записей периферийных структур остается определить, какой период могли отражать знаки центральной спирали. При условии, что каждая из ее лунок обозначает один тропический год, она может быть представлена в качестве записи 4,5 цикла большого сароса:
243: 54 = 4,5 большого сароса.
Но закономерен вопрос: как в свете принятого условия (лунка обозначает один год) следует расшифровать весь орнамент мальтинской пластины? Ответ прост — как нечто целостное узор так называемой пряжки или бляхи представляет собой своеобразную криволинейно-числовую формулу чрезвычайно примечательного календарно-астрономического периода, продолжительность которого составляет девять больших саросов или 486 тропических лет:
Схема записи девяти больших саросов при тропическом начислении времени.
11 + 54 + 57 + (242 + 1) + 62 + 45 + 14 = 486 = 54 9.
Период продолжительностью в 486 тропических лет, включающих в себя целое число больших саросов (9), вызывает исключительный интерес в связи с тем поразительным обстоятельством, что в нем целое число солнечных лет соответствует целому числу как синодических (6011), так и драконических (6523) месяцев.
В самом деле,
486 тропических лет = 177507,612 суток, 6011 синодических месяцев = 177508,4366 суток, 6523 драконических месяца = 177505,1806 суток.
Чтобы по достоинству оценить знание палеолитическим человеком Мальты этого великолепного цикла, близкого половине тропического тысячелетия, в котором максимально сближены несопоставимые (из-за их дробности) календарно-астрономические величины — тропический год (365,242 суток), синодический (29,5306 суток) и драконический (27,2122 суток) месяцы, достаточно напомнить: знаменитый 600-летний цикл мифических библейских патриархов, известный в истории астрономии как Великий год «допотопной эпохи», выдающийся астроном Жан Доминик Кассини назвал в XVIII веке самым прекрасным из всех циклических календарных периодов, созданных в древности[30]. Особое удобство использования 600-летнего периода директор Парижской астрономической обсерватории усмотрел в том, что количество суток в нем (219146) составляет целое число не только солнечных лет, но и синодических месяцев (7421). Согласно расчетам Ж. Д. Кассини, «допотопные» патриархи должны были в таком случае предполагать длительность синодического месяца в 29 дней 12 часов 44 минуты 3 секунды, а год продолжительностью в 365 дней 5 часов 51 минуту 36 секунд.
Великий год патриархов фиксировал момент возвращения Солнца и Луны в те же точки пространства, в которых светила находились 600 лет назад, с точностью до нескольких минут. Результаты расшифровки знаковой системы мальтинской пластины показывают, что Великий год палеолитического человека Сибири длительностью в 486 лет еще более прекрасен, чем Великий год патриархов. Мальтинский жрец знал длительность всех главных календарных периодов с большей точностью, чем мифические патриархи Ближнего Востока и библейских времен. Давайте сравним, чтобы оценить точность расчетов палеолитических астрономов:
Великий год библейских времен
600 тропических лет = 219145,2 суток, 74221 синодический месяц 29,5306 суток = = 219145,5826 (превышение составляет 1,3826 суток),
8053 драконических месяца 27,2122 суток = = 219139,8466 (недостаток 6,3534 суток).
Великий год мальтинской культуры
486 тропических лет = 177507,612 суток, 6011 синодических месяцев 29,5306 суток = 177508,4366 суток (превышение составляет 0,8246 суток),
6523 драконических месяца 27,2122 суток =
= 177505,1806 суток (недостаток 3,2560 суток).
Как нетрудно убедиться, точность «совмещения несовместимого» у палеолитических астрономов Мальты превосходит точность того же у мифических патриархов почти в два раза! Значит, главные астрономические периоды определялись жрецами мальтинской культуры с идеальной, по существу, точностью, а девятикратный проход по годам большого сароса позволял им уверенно засекать возвращение Солнца и Луны в ту же точку пространства, в которой дневное и ночное светила находились почти полтысячелетия назад. Чтобы оценить прочность культурных традиций в палеолитических культурах Сибири, позволяющих заглянуть в будущее на столь значительный срок, достаточно сказать, что за это время должны были смениться, как минимум, девять поколений людей. Астрономы древнекаменного века, разрабатывая календарь, очевидно, решали сначала обычную для такой проблемы задачу — отыскание наиболее длительного периода, который был бы общим кратным месяца и года, подбирая к этому, в общем-то не существующему, общему кратному более или менее удовлетворительное приближение. Такая работа определяла движущую силу тщательного наблюдения за небесными светилами, в особенности за Луной. Позже на повестку дня одна за другой ставились своего рода сверхзадачи календаря — определение временных границ так называемых гелиа-ков, начиная с трехгодичного цикла и сароса, а затем и экзелигма, что в конечном счете привело к выявлению Великого года, включающего в себя девятикратный цикл экзелигма.
Оставим, однако, пока в стороне столь грандиозный хронологический период, но лишь для того, чтобы, обратившись снова к большому саросу, продемонстрировать осведомленность палеолитического человека Сибири в календарно-астрономических циклах особой значимости (опять-таки связанных с затмениями).
При всей важности знания палеолитическим человеком особой значимости временного цикла, равного большому саросу, все же очевидна ограниченность возможности использования столь продолжительного календарно-астрономического цикла для предсказания затмений. Ясно, что большой сарос позволял лишь точно знать время, когда конкретное, случившееся в данном месте затмение повторится вновь — через 57 дра-конических лет или 54 тропических года и 33 (или 32) дня. Но ведь иные затмения могут наступить также при счислении определенных месяцев и лет, которые составляют сам этот большой сарос (быть может, драконические или синодические месяцы, которые приходятся на лунки центров спиралей, а также центра месяцевидной фигуры, были теми месяцами, когда с наибольшей вероятностью могло произойти затмение?). Так возникает очередная проблема — поиск отражения в орнаментальных структурах пластины периодов, когда при счислении большого сароса с наибольшей вероятностью могли ожидаться затмения.