Земля плоская. Генеалогия ложной идеи - Виолен Джакомотто-Шарра
«Трактат о небе» Авиценны (ум. 1037), составляющий вторую часть знаменитой «Книги исцеления», содержит тезисы, дискуссия вокруг которых шла со времен античности до XI века. Врач-философ защищает аристотелевские доводы, изложенные выше. В третьей главе описаны различные небесные тела и их движение, затем Земля и образующие ее стихии. Авиценна пытается объяснить, почему часть земель «являет собой рельеф, делающий местность неровной», иначе говоря – выступающий. Объяснение, как и у Аристотеля, связывается с засушливостью, поскольку влажная почва «сохраняла бы естественную шарообразную форму». В доказательство Авиценна приводит наблюдения мореплавателей:
Не будь поверхность вод сферической, корабли, если смотреть на них издалека, были бы видны полностью, хоть и казались бы меньше, но нельзя было бы видеть сначала одну часть, не видя другой. Однако все происходит иначе. Сначала появляется штурвальный мостик, а потом уже весь корабль112.
Он также предлагает еще одно доказательство сферичности, в большей степени геометрическое. Оно похоже на доводы, которые можно прочесть у Теона Смирнского:
Будь поверхность вод плоской, их срединная часть была бы ближе к центру [Земли], к которому она естественным образом стремится, чем две крайние части. Эти противоположные части, как мы и сказали, клонились бы к центру, дабы его достичь, или же чтобы оказаться по отношению к нему в одинаковом положении, описанном выше. […] Значит, расстояние между поверхностью и центром одно и то же и [эта поверхность] сферична113.
Авиценна ищет глубинную причину неподвижности Земли: ее могут сдерживать воздух или окружающие светила. Место Земли – естественный центр мира, потому что в нем делаются неподвижными все весомые тела114.
Авиценна не формулирует новые космографические гипотезы: нам он интересен как проводник, ведь для латинского Запада «Книга исцеления» сыграла важную роль. Ее вторая часть была частично переведена в Толедо – не ранее второй половины XII века. В этот перевод был включен и «Трактат о небе и мире», вдохновленный Аристотелем, но не принадлежавший Авиценне (это была компиляция из комментариев Фемистия к аристотелевскому тексту). Подлинный «Трактат о небе» перевели только во второй половине XIII века115. Наследие врача-философа – с его неоплатоническими мотивами, привлекавшими христиан, – впоследствии обрело широкое признание в европейских университетах, а иногда даже использовалось для трактовки и понимания текстов Аристотеля, знакомство с которыми происходило в то же время.
После перевода «Географии» (jughrāfiyā) Птолемея заявляет о себе еще одна смежная с натурфилософией наука. Как и в Александрии во II веке, с этой дисциплиной имеют дело математики и астрономы. Начиная с IX века она развивается под именованием s.ūrat al-’ard. (образ Земли) – в дополнение к латинскому термину imago mundi (образ Мира). В силу административных задач развивается картография – и возвращается к делению ойкумены на пять климатических зон, которое существовало у греков и приписывалось арабами Птолемею. Затем складывается направление географии, которое принято называть masālik wa al- mamālik, – оно описывает «маршруты и государства»: это произошло, в частности, стараниями таких ученых, как аль-Якуби или аль-Мукаддаси116. Наконец, когда интеллектуальный центр перемещается на Запад, зарождается общая география обитаемого мира, самый известный представитель которой, безусловно, сицилиец аль-Идриси (ум. 1165). Религиозные нужды (например, определение киблы, то есть направления на Мекку, или точного времени для молитв) обусловили разнообразное совершенствование астрономических наблюдений. Навигационной науке принесло пользу улучшение конструкции астролябий, изобретателями которых часто называют арабов, хотя в действительности ими были греки.
В IX веке, в правление халифа аль-Мамуна, арабские ученые стали измерять длину градуса земного меридиана методом, несколько отличающимся от того, которым пользовался Эратосфен. Арабский биограф более позднего времени Ибн Халликан описывает экспедицию, отправившуюся в пустыню Сингар и на равнину Куфа, выбранные за плоский рельеф:
Остановились они, выбрав место в пустыне, и с помощью инструментов измерили высоту северного полюса. Воткнули они там шест, привязали к нему длинную веревку и пошли на север по ровной земле, стараясь, насколько могли, не отклоняться ни вправо, ни влево. Когда веревка кончилась, они поставили другой шест, привязали к нему новую длинную веревку и продолжили путь на север. Делали они так до тех пор, пока не пришли в точку, где измерили высоту того же полюса и обнаружили, что по сравнению с первым измерением она увеличилась на один градус. Тогда они измерили пройденный путь, определив его по длине веревки, и получили в сумме 66 миль и еще 2/3117.
Метод, состоящий в измерении длины участка меридиана, соответствующего градусу широты, как отмечает Э. С. Кеннеди118, представляется менее удобным, чем у греков (взять уже известное расстояние по меридиану, а затем определить разницу в широте между двумя конечными точками). Трактовка результата в последующие столетия зависит от значения, присвоенного mīl (арабской миле), – мы еще увидим, насколько важным окажется этот вопрос перед путешествием Колумба. Та же величина – 66 и 2/3 mīl – встречается в «Книге предупреждения и пересмотра» энциклопедиста аль-Масуди (ум. 956), жившего в Багдаде и Фустате. Он приравнивает этот результат к полученному Птолемеем, и, если «умножить это число на 360 градусов, насчитываемых в круге, получается 24 000 mīl» – столько составляет окружность Земли, что при 1 арабской миле равной 1,9735 современного километра, удлиняет ее почти на одну пятую119. В других источниках приводится значение окружности, равное 56 и 2/3 mīl (что гораздо ближе к