Геннадий Горелик - Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
Гамов взялся за космологии, надеясь теоретически объяснить эти данные — объяснить происхождение химических элементов во Вселенной. В то время считалось, что нынешняя пропорция элементов зафиксировалась в некий ранний момент расширения Вселенной, когда — из-за уменьшения плотности и охлаждения — активные ядерные реакции прекратились. А до того момента, как считалось, имелось ядерно-тепловое равновесие между разными ядрами. Однако равновесные расчеты давали ничтожную долю тяжелых элементов, вопреки данным геохимии.
Гамов предположил иной — неравновесный — сценарий: в быстро расширяющейся Горячей Вселенной из первичного чисто нейтронного вещества при уменьшении плотности начинают образовываться протоны, к которым последовательно прилипают нейтроны, образуя все более тяжелые ядра, пока расширение Вселенной не остановит этот процесс. Эта идея Гамова оказалась очень плодотворной, хоть и… ошибочной. Ошибочной, потому что последовательное добавление нейтронов обрывается очень рано — не существует устойчивых ядер с массой 5, и перепрыгнуть через этот барьер не удавалось. А плодотворной стала сама возможность неравновесной физики.
Теоретики предполагали равновесие, в сущности, по той же причине, по которой потерянные ключи ищут под фонарем — там светлее и, значит, легче искать. Лучше все же сообразить, где примерно ключи могли выпасть, и искать там, хоть и ощупью. Так и условия ранней Вселенной лучше не постулировать «для простоты», а извлечь из них следствия, которые после сравнения с наблюдениями скажут нечто о процессах в начале космологического расширения. Так впоследствии получили соотношение легких элементов космологического происхождения — водорода и гелия, подтвердив предположение Гамова о том, что ранняя Вселенная была горячей.
Первыми же пользу из идеи неравновесности извлекли главные оппоненты Гамова — сторонники стационарной космологии. Они разработали теорию рождения тяжелых элементов во взрывах звезд, и ныне это — общепринятое представление о происхождении основного вещества планет, включая все живое. Уже поэтому космология имеет отношение к жизни. Без того чтобы взрывы первого поколения звезд в юной Вселенной накопили элементы тяжелее гелия, известная нам форма жизни была бы невозможна.
Однако сама стационарная космология не выдержала другого следствия из идеи Горячей Вселенной — космического реликтового излучения. Гамов и его сотрудники несколько раз оценивали температуру этого излучения, хоть и не для того, чтобы озадачить радиоастрономов своим предсказанием. Они хотели убедиться в разумности своего сценария: если получилась бы слишком большая температура, сценарий пришлось бы забраковать. Его забраковали, как уже сказано, по совсем другой причине, но представление о фоновом космическом излучении и его малой температуре жило своей жизнью и дождалось случайного открытия в 1965 году!
И Гамов дождался триумфа правильного следствия из его ошибочной идеи. Эту удачу он заслужил, расширив горизонт физического подхода к ранней Вселенной и не отступив от космологии Фридмана в трудное для нее время.
Подарок судьбы Андрея Сахарова
К Андрею Сахарову мировая слава пришла не за его научные достижения. Она на него обрушилась в 1968 году, сразу после того, как на Западе опубликовали его большую статью «Размышления о прогрессе, мирном сосуществовании и интеллектуальной свободе». Семь лет спустя его наградили Нобелевской премией мира за
«убедительность, с которой он провозгласил, что нерушимые права человека дают единственный надежный фундамент для подлинного и устойчивого международного сотрудничества» и за «бесстрашную личную приверженность к отстаиванию фундаментальных принципов мира между людьми».
Преображение секретного физика, «отца» советской водородной бомбы, в общественного деятеля и правозащитника озадачивало и западных наблюдателей, и тех, кто знал Сахарова со студенческих лет. Советским пропагандистам, однако, надлежало объяснить народу, что случилось с академиком, трижды Героем и лауреатом. Одно из объяснений звучало так: «Сахаров решил возместить прогрессировавшую научную импотентность лихим ударом в другой области».
Академик и трижды Герой Андрей Сахаров за вечерней партией шахмат с женой Клавдией, вторая половина 1960-х годов, когда Сахаров выдвинул свои главные научные и общественно-политические идеи.
На самом же деле в 1967 году — накануне «лихого удара в другой области» — Сахаров опубликовал две свои самые яркие чисто научные идеи. И это, укрепив его веру в свои силы, сыграло роль в его поворотном жизненном решении.
Его изобретательский талант и чувство ответственности отделили его от чистой науки почти на двадцать лет, то есть почти навсегда, если говорить о способности выдвинуть принципиально новую идею. Для него это был больной вопрос. Оглядывая свою жизнь, шестидесятилетний Сахаров в «рукописной беседе» с женой — укрываясь от ушей КГБ — написал о своем возвращении в чистую науку в «преклонные» сорок с лишним лет:
На самом деле, подарок судьбы, что я смог что-то сделать после спецтематики. Никому, кроме Зельдовича и меня, это не удалось. И в США тоже ни Теллер, ни Оппенгеймер не смогли вернуться к большой науке. Там исключение — Ферми. Но он быстро умер и он — гений.
Вернуться в чистую науку Сахарову помог общительный Зельдович. Уйдя из ядерного проекта в 1963 году, он Сахарову заменял участие в научных семинарах и общение с мировой наукой. И первую задачу в космологии Сахаров, можно сказать, получил из рук Зельдовича. Но решил он ее сам и запомнил день, когда это случилось, — 22 апреля 1964 года: «…Я вновь уверовал в свои силы физика-теоретика. Это был некий психологический разбег, сделавший возможными мои последующие работы тех лет».
Его новая уверенность видна в «программе на 16 лет», которую он составил для себя в 1966 году. Почему 16? Возможно, потому, что предыдущие 16 лет провел на Объекте — в секретном ядерном центре, в отрыве от высокой науки. Видимо, по той же причине программа включила в себя 16 проблем, начиная с солидной «Фотон + Гравитация» и кончая загадочным «Мегабиттроном».
Особого внимания заслуживает пункт 14 в этой программе. Правда, думая о сложных физико-математических материях, академик пропустил восьмой пункт. А значит, пункт 14 становится фактически 13-м, чем можно объяснить его особый характер. Похоже, поставив себе цель набрать 16 задач, Сахаров задумался в этом месте, поставил вопросительный знак и, вспомнив, что наука плохо поддается планированию, дописал: «Именно это я и буду, наверно, делать». Он оказался прав: «именно этим», незапланированным, он занялся в том же, 1966 году и даже уместил в этот пункт две самые яркие свои теоретические работы.
Во-первых, он объяснил, почему во Вселенной частиц гораздо больше, чем античастиц, и то была самая успешная из его чисто физических идей. А во-вторых, предложил новый подход к гравитации, в которой усмотрел проявление ультрамикроскопических свойств вакуума.
Симметрии асимметричной Вселенной
Научный синоним слову «красота» — понятие «симметрия», математически точное, важное в физике и, сверх того, наглядное. Простой пример — зеркальная симметрия бабочки: если ее отразить в зеркале, правое крыло станет на место левого, но никакой разницы не заметить. Всякая симметрия — это закономерность формы, в силу которой форма эта не меняется при каких-то переменах.
Такое свойство, выраженное на языке математики, стало инструментом физики в изучении устройства природы. Физика прошла долгий путь, прежде чем в своих законах разглядела проявления глубинных симметрий мироздания. Все знают, что вертикально поставленный и закрученный волчок стоит на одной точке и не падает. Но почему? Потому что не знает, куда упасть: все направления, поперечные его оси, равноправны — все направления в пространстве симметричны относительно этой оси. Такая симметрия определяет главный закон волчка — закон сохранения момента импульса.
Понятие симметрии — одно из самых работоспособных в физике. Поведение не только волчка, но и атома и атомной бомбы определяются симметрией. Теоретик всегда ищет максимально симметричное упрощение своей задачи. А всякий фундаментальный физический закон раскрывает некую симметрию природы. Если же обнаруживается какая-то асимметрия, то это — проблема для теоретика.
«Электродинамика Максвелла в применении к движущимся телам приводит к асимметрии, несвойственной самим явлениям», — так Эйнштейн начал статью о теории относительности. Созданием этой теории он преодолел асимметрию, которая оказалась лишь видом сбоку на глубинную симметрию природы.