Леонид Вишняцкий - Неандертальцы какими они были, и почему их не стало
«Неандертальцы весьма своеобразны по строению их скелета и, особенно, по форме черепа. Если вы посмотрите на скелеты любых двух близкородственных видов ныне живущих приматов (например, черного и коричневого лемуров), вы обязательно обнаружите, что различия между ними намного меньше тех, что отделяют скелет типичного неандертальца от нашего собственного. Если исходить из установленных стандартов систематики млекопитающих, то ясно, что неандертальцы — это отдельный вид...», — уверен американский антрополог И. Таттерсол (Tattersall 1995: 10). Эту уверенность разделяют с ним многие его коллеги.
«Если бы неандертальцы и современные люди были грызунами или антилопами, любой специалист по палеонтологии позвоночных, не колеблясь, отнес бы их к разным палеонтологическим видам», — пишет французский исследователь Ж.-Ж. Ублэн. В реальности, однако, продолжает он, «речь идет о людях, причем людях с очень схожими формами технических и поведенческих адаптаций. В прошлом именно это было одной из причин, побуждавших антропологов объединять тех и других в один вид» (Hublin 2006: 57).
Кроме анатомических различий и, по меньшей мере, полумиллиона лет самостоятельной эволюционной истории, в пользу обособленного положения неандертальцев по отношению к гомо сапиенс свидетельствуют и генетические данные. Выше мне уже приходилось несколько раз ссылаться на сведения, добытые благодаря появившейся в последние годы чудесной возможности заглянуть в ДНК давно вымерших видов. Теперь пришло время рассказать об этом подробней.
Ископаемые гены
Палеогенетике от роду — четверть века. Первая успешная попытка извлечь, реконструировать и проанализировать ДНК из мертвых тканей была осуществлена в США в 1984 г., причем «тканям» этим — шкуре вымершей к тому времени разновидности зебры под названием квагга—было всего-то 140 лет. Затем пришел черед египетских мумий и палеоиндейских скелетов возрастом в несколько тысяч лет, а сегодня вполне обычным делом стало уже изучение генов людей и животных, живших десятки тысяч лет назад. Чуть ли не каждую неделю в специальных журналах появляются статьи с новой информацией о ДНК мамонтов, пещерных медведей и прочих экзотических существ. С 1997 г. в число этих прочих входят и неандертальцы.
Прорыв, начало которому было положено двадцать пять лет назад, стал возможен благодаря методу, именуемому полимеразной цепной реакцией. Этот метод, изобретенный американским биохимиком К. Муллисом в 1983 г., позволяет получить неограниченное количество пригодных для анализа копий фрагментов ДНК — как современной, так и древней. Сопоставляя последовательность нуклеотидов во фрагментах ДНК, добытых из костей (или, скажем, слюны, если речь идет о доселе здравствующих представителях животного мира) разных индивидов и/или видов, можно оценить генетическое расстояние между ними, определить, кто из сравниваемых друг другу близкая родня, а кто — седьмая вода на киселе, и даже рассчитать — пусть и очень приблизительно — время, когда жил их последний общий предок.
Все перечисленное проделали и с ДНК неандертальцев. Результаты получились очень интересные. Однако прежде чем познакомиться с ними, нам следует, наверно, вспомнить некоторые азы биологии. Ну, хотя бы для того, чтобы у читателей, успевших несколько подзабыть школьный курс этой науки, не появилось подозрение, что их просто пытаются водить за нос с помощью непонятных слов.
Итак, ДНК. Эту аббревиатуру генетики придумали, чтобы не мучиться по сто раз на дню, выговаривая или набирая на клавиатуре компьютера слова «дезоксирибонуклеиновая кислота». Молекулы, или, точнее, макромолекулы ДНК — место хранения генетической информации, определяющей индивидуальные особенности и характер развития каждого организма и передаваемой от поколения к поколению. Каждая такая макромолекула — это цепочка, образованная двумя тяжами (нитями), спирально закрученными один относительно другого, а каждый тяж представляет собой последовательность тысяч и миллионов нуклеотидов. Эти нуклеотиды были бы похожи между собой, как близнецы, если бы не так называемые азотистые основания, входящие в их состав наряду с молекулой сахара (дезок- сирибоза) и фосфата (фосфорная кислота), и представленные четырьмя разными типами. Два типа — гуанин и аденин — называются пуриновыми основаниями, а еще два — тимин и цитозин — пиримидиновыми.
Рис. 18. Структура двойной спирали ДНК. Буквами обозначены: Ф — фосфат, С — сахар, А — аденин, Т — Тимин, Г — гуанин, Ц — цитозин.
Молекулы сахара и фосфата образуют остов тяжей (нитей) ДНК, а основания находятся между тяжами и посредством слабых водородных связей соединяют между собой противолежащие нуклеотиды (рис. 18). При этом аденин может соединяться только с тимином, а гуанин только с цитозином. Последовательность этих парных оснований — шифр, в котором закодированы свойства белковых молекул и, в конечном счете, свойства всего живого. Гены, т. е. сегменты ДНК, отвечающие за синтез разных белков, могут иметь длину от нескольких десятков до нескольких миллионов парных оснований.
Иногда вследствие слабости водородных связей при репликации ДНК происходят мутации, т. е. «перестановки» оснований, или, иными словами, изменения в порядке последовательности нуклеотидов. В большинстве своем такие мутации нейтральны по отношению к естественному отбору. Они не выбраковываются и не подхватываются им, поскольку не отражаются на приспособленности организмов, и благодаря этому обстоятельству скорость их накопления на молекулярном уровне в целом постоянна. Следовательно, если для истории изучаемой группы организмов имеются более или менее четкие и надежно датированные палеонтологические реперы (точки отсчета), то эту скорость можно рассчитать. Например, для гоминид, а иногда и для всех обезьян вообще в качестве основы расчетов используется генетическое расстояние (т. е. количество различий в последовательности нуклеотидов в ДНК) между современными людьми и шимпанзе, эволюционные пути которых, судя по ископаемым находкам, разошлись около 6 млн. лет назад.
Зная скорость накопления мутаций и генетическое расстояние между разными особями или таксонами (т. е. видами, родами и т. д.), можно не только судить о близости их родства, но и рассчитывать время дивергенции, расхождения от общего предка, применяя для этого упоминавшийся уже выше метод молекулярных часов. Обычно для таких расчетов используют ДНК из митохондрий клеток, которая, в отличие от ДНК, содержащейся в ядрах, представлена в каждой клетке сотнями и тысячами идентичных копий, наследуется только по женской линии, и к тому же характеризуется более высокими темпами накопления мутаций.
На основании изучения митохондриальной ДНК были получены и первые сведения о генетике неандертальцев. Сначала, в 1997 г., удалось выделить пригодный для анализа фрагмент мтДНК из одной из костей, найденных в 1856 г. в гроте Фельдгофер, и сравнить его с аналогичным участком ДНК современного человека. Следующими «поставщиками» ископаемого генетического материала стали кости из пещер Виндия (Хорватия) и Мезмайская (Северный Кавказ, Россия). К настоящему времени генетические данные имеются уже примерно по 15 неандертальцам, жившим или погребенным в разное время в пещерах Испании (Эль Сидрон), Франции (Ля Шапелль-о-Сен, Рош де Вилленев), Бельгии (Анжи, Складина), Италии (Монте Лессини), Узбекистана (Тешик-Таш) и Южной Сибири (пещера Окладникова).
В последние годы палеогенетики все больше внимания стали уделять изучению ядерной ДНК. Это и не удивительно, поскольку именно в ней сосредоточена львиная доля генетической информации.[8] В 2006 г. группа исследователей из Института эволюционной антропологии им. Макса Планка в Лейпциге объявила даже о предстоящей в скором времени полной расшифровке неандертальского ядерного генома, и хотя сейчас уже очевидно, что названный тогда срок выполнения проекта — два года — был чересчур оптимистичным, работа идет, и идет, судя по поступающим сообщениям, вполне успешно. По оценке одного из ее инициаторов и руководителей, С. Пээбо, к началу 2009 г. было «раскодировано» около 60 % ядерной ДНК неандертальцев (а точнее, двух неандерталок) из Виндии, а когда моя книга дойдет (надеюсь) до читателя, этот показатель, возможно, будет уже приближаться к 100 %.
Что же касается митохондриального генома, то здесь стопроцентный результат был достигнут еще в 2008 г. Исходным материалом тоже послужила кость из Виндии, имеющая прямую (т. е. полученную по самой этой кости, а не по сопровождающим ее находкам) радиоуглеродную дату 38,3+2,1 тыс. лет назад. Исследование мтДНК, выделенной из этой кости, позволило идентифицировать и расставить по местам все 16565 пар нуклеотидных оснований, составлявших кольцевую молекулу митохондриальной дезоксирибонуклеиновой кислоты неандертальца, [9] и сравнить полученную таким образом последовательность с последовательностями, выявленными у 53 современных людей разной расовой принадлежности. При попарном сопоставлении оказалось, что из шестнадцати с половиной тысяч позиций у нас и неандертальцев не совпадают в среднем 206, тогда как геномы современных людей различаются между собой гораздо меньше: максимум по 118 позициям, минимум по 2 (Green et al. 2008). Эти данные в целом подтверждают выводы первых палеогенетических работ, согласно которым разница в последовательности нуклеотидов в мтДНК неандертальцев и современных людей примерно в три или три с лишним раза превышает «генетическое расстояние» между ныне существующими расовыми группами человека. Много это или мало? Это достаточно, чтобы продолжать рассматривать неандертальцев как особый вид, но совсем недостаточно, чтобы вообще не считать их за людей. Ведь если провести аналогичное сравнение, например, с мтДНК шимпанзе, то выяснится, что от них мы отличаемся в среднем по 1500 позициям.