Айзек Азимов - Энергия жизни. От искры до фотосинтеза
Молекула тироксина необычна тем, что в ее состав входят четыре атома йода. В 1952 году английские биохимики Гросс и Питт-Риверс открыли еще одно вещество, производимое щитовидной железой, «трийодтироксин», отличие которого от тироксина заключается в том, что в состав его молекулы входят не четыре, а три атома йода. Действие его оказывалось схожим с действием тироксина. Похоже, что характерные свойства как тироксину, так и трийодтироксину придает именно йод, больше в организме практически нигде не встречающийся.
Щитовидная железа выбрасывает гормоны прямо в кровь. Там они соединяются с белковыми молекулами, которые в норме находятся в плазме (жидкой составляющей крови). Если выделить соответствующую белковую фракцию, то можно проанализировать ее на содержание йода. Таким образом можно установить, какой объем гормона вырабатывается щитовидной железой (поскольку ее гормон — единственный источник йода в организме), а это, в свою очередь, будет свидетельствовать об активности щитовидной железы, из которой можно высчитать и интенсивность основного обмена. При этом не нужно голодать, неподвижно лежать целый час и дышать в шланг, и нет необходимости в дорогостоящих лабораторных комнатах — достаточно просто сдать небольшое количество крови.
Проблема оказалась только в том, чтобы на самом деле суметь проанализировать содержание йода в крови — ведь речь шла о точном установлении цифр порядка 1/20 000 000 грамма. Это стало возможным только в середине 50-х годов XX века.
Для точного измерения столь малых величин пришлось прибегнуть к явлению катализа. После того как йод, связанный с белком, отделяют и собирают в растворе, напрямую измерить содержание растворенного вещества крайне маловероятно. Поэтому в раствор добавляются химические вещества, о которых известно, что под каталитическим воздействием йода они вступают в реакцию. Вещества эти добавляются в строго измеренном количестве, а скорость их реакции очень сильно зависит даже от малейших колебаний концентрации йода, так что именно по ней содержание йода и измеряется.
Следить за ходом реакции очень удобно, потому что она сопровождается изменением цвета раствора, которое можно точно измерить с помощью соответствующих приборов. Чем сильнее меняется цвет, тем интенсивнее проходит реакция, тем больше концентрация йода, тем выше уровень активности щитовидной железы, тем больше значение интенсивности основного объема. Очень удобно!
Глава 15.
КАТАЛИЗАТОРЫ ЖИЗНИ
Удобно также рассматривать дыхание и горение как родственные процессы, а человеческий организм — как аналог костра, раздуваемого кислородом и производящего углекислый газ. Но на самом деле между огнем и живым организмом существуют и значительные различия.
Во-первых, огонь — механизм однонаправленный: он превращает дерево или иное топливо в углекислый газ и воду, оставляя лишь пепел, и синтезировать новое топливо не способен. А живой организм, извлекая энергию из распада углеводов, жиров и белков в ходе реакций, схожих с горением, в то же время умеет и создавать запасы новых жиров и углеводов, а также — строить новые белки взамен старых (этот процесс я опишу позже). В растущем организме все эти сложные молекулы строятся даже быстрее, чем поглощаются, ведь в организме десятилетнего ребенка перечисленных веществ содержится больше, чем в организме семилетнего, хотя вроде бы они активно расходовались с того момента на протяжении трех лет.
При создании сложных молекулярных составляющих ткани уровень свободной энергии увеличивается (как мы вскоре увидим), и энтропия соответственно уменьшается. То есть происходит процесс обратный тому, какой в терминологии термодинамики называется спонтанным.
Еще в конце главы 5 я выдвинул предположение о том, что, возможно, принципиальное различие между живой и неживой материей заключается в возможности первой вызывать локальное уменьшение энтропии. Тогда я упоминал только об энтропии механической энергии («совершение усилий») и приводил в качестве примера способность живых существ двигаться против силы тяжести. Теперь мы видим также, что живая материя может вызывать уменьшение энтропии и относительно энергии химической, обладая способностью сформировывать крупные сложные молекулы из более простых, хотя все спонтанные реакции протекают, наоборот, от большого к малому.
Связь между жизнью и уменьшением энтропии становится еще нагляднее, но до четкого определения нам пока еще далеко. В главе 5 я уже указывал, что солнечное тепло испаряет океанскую воду, а силы, действующие в земной коре, воздвигают горы, и ни в первом, ни во втором случае явно не задействовано никаких структур, которые можно было бы отнести к «живым».
Помимо этих «безжизненных» примеров из области механической энергии можно найти аналогичные и из области энергии химической. Облучение растворов простых молекул ультрафиолетом приведет к образованию более сложных молекул, и множество фактов свидетельствует о том, что в первые миллионы лет существования Земли именно так и происходило в массовом порядке — жизни еще не было в принципе, а Солнце яростно облучало ультрафиолетом Мировой океан. На самом деле именно этим «безжизненным» процессам уменьшения энтропии применительно к химической энергии, скорее всего, и обязана своим возникновением сама жизнь.
Так искомый принцип различения снова ускользает от нас.
Однако не стоит обескураживаться. Ведь между огнем и живым существом есть и еще одно очевидное различие.
Огонь — очень горячий, а человек — нет. Да, человек поддерживает некоторое тепло в своем организме, но эти 37 °С ни в какое сравнение не идут с температурами пламени — 700 °С и выше. А в организмах холоднокровных животных процесс поглощения кислорода и производства углекислоты может проходить и при температурах около 0 °С.
Соответственно тут же вспоминаются условия, при которых реакции подобные горению могут запускаться при низких температурах. Вряд ли горючее, используемое организмом, воспламеняется легче, чем обычное топливо костра. Если взять те же самые пищевые продукты и просто положить их на стол при комнатной температуре, они не загорятся никогда и процесс соединения с кислородом будет происходить в них не быстрее, чем в древесине или угле. А вот в организме реакции соединения почему-то происходят достаточно легко и при температурах, которые никогда не поднимаются выше просто теплых.
Ученым XIX века оставалось только сделать единственно логичный вывод о существовании в живой ткани неких катализаторов, работающих по схеме, которую я описал в главе 12. На самом деле именно те катализаторы, которые вызывают горение в лабораторных условиях — палладий и платина, — в живой ткани не встречаются, но это может означать лишь то, что существуют и другие. И опять можно было задаться все тем же вопросом: являются ли эти биологические катализаторы таковыми в полном смысле слова и в соответствии с законами термодинамики, действуя так же слепо, как и порошок платины, или все же в данном случае нам удастся обнаружить некую «жизненную силу», стоящую над термодинамикой.
В среде химиков XIX века этот вопрос вызвал ожесточенные споры, и только благодаря ряду реакций, известных человечеству с доисторических времен, опыт перевесил аргументы сторонников существования «жизненной силы».
Во фруктовых соках, как и в замоченном зерне, как правило, со временем происходят некоторые изменения. Не всегда они оказываются желательными, но в некоторых случаях — и это обнаружили еще доисторические люди — человек, выпивший такую «подпортившуюся» жидкость, чувствовал приятное тепло и легкость. Со временем люди выяснили, что можно не просто выставлять сок и надеяться, что получится нужный результат, а добавлять в емкость с соком небольшое количество уже достигшей нужного состояния жидкости из предыдущей порции, и тогда изменения, во-первых, идут в нужном направлении, а во-вторых — гораздо быстрее.
Так же и в тесте, из которого пекут хлеб, иногда происходят реакции, приводящие к формированию углекислого газа. Пузырьки газа образуются по всей массе теста, и получающиеся в результате лепешки разительно отличаются от обычных — плотных и тяжелых. И в этом случае тоже перенос кусочка теста с пузырьками в емкость с обычным тестом приводит к распространению реакции по всему объему теста.
Все эти изменения вызываются такой вещью, как дрожжи. Образование пузырьков газа как в вине, так и в тесте очень похоже на «медленное кипение» вещества. В связи с этим в современной терминологии процесс, при котором поднимается тесто, фруктовый сок превращается в вино, а закваска зерновых — в пиво, называется «ферментацией», от латинского слова, означающего «кипеть».