Андрей Лапо - Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого
Сульфатредуцирующие бактерии, как известно, являются гетеротрофными организмами. Энергетическим источником их существования служат органические соединения, полностью минерализуемые бактериями с образованием углекислоты. Исследования, проведенные доктором геолого-минералогических наук Аллой Юльевной Леин, показали, что эта углекислота участвует в формировании диагенетических карбонатов, дискуссия об образовании которых продолжалась долгие годы. Ключом к решению проблемы оказалось изучение изотопного состава углерода загадочных карбонатов. По этому показателю было достоверно установлено, что никакой другой источник углекислоты, кроме анаэробной деструкции органического детрита, не мог обеспечить формирование диагенетических карбонатов.
Другими характерными минералами анаэробной зоны диагенеза морских осадков являются пирит и другие сульфиды железа. Подобно карбонатам, они образуются в результате взаимодействия биогенного вещества (в данном случае — сероводорода) с абиогенным. «Память» о биогенном сероводороде запечатлевается в изотопном составе серы этих минералов. Живое вещество в этом случае является лишь поставщиком исходного материала для сульфидов, но не участвует непосредственно в их формировании. Большое значение на стадии диагенеза имеет и средообразующая деятельность сульфатредуцирующих бактерий, а именно, изменение ими pH среды.
Таковы события, происходящие «под занавес» начальных стадий литогенеза.
Для правильного понимания процессов формирования осадочных пород в условиях биосферы при определяющем влиянии живого вещества очень важными являются три основных положения, которые В. И. Вернадский называл «биогеохимическими принципами». В его формулировке[63] они звучат следующим образом:
I принцип: «Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению».
II принцип: «Эволюция видов в ходе геологического времени, приводящая к созданию форм жизни, устойчивых в биосфере, идет в направлении, увеличивающем биогенную миграцию атомов биосферы» (или в другой формулировке: «При эволюции видов выживают те организмы, которые своею жизнью увеличивают биогенную геохимическую энергию»).
III принцип: «В течение всего геологического времени, с криптозоя, заселение планеты должно было быть максимально возможное для всего живого вещества, которое тогда существовало».
Для Вернадского I биогеохимический принцип был тесно связан со способностью живого вещества неограниченно размножаться в оптимальных условиях. «Вихрь атомов», который представляет собой жизнь, стремится к безграничной экспансии. Следствием этого и является максимальное проявление биогенной миграции атомов в биосфере.
II биогеохимический принцип, по существу, затрагивает кардинальную проблему современной биологической теории — вопрос о направленности эволюции организмов. По мысли Вернадского, преимущества в ходе эволюции получают те организмы, которые приобрели способность усваивать новые формы энергии или «научились» полнее использовать химическую энергию, запасенную в других организмах. В ходе биологической эволюции, таким образом, увеличивается КПД биосферы в целом. Чисто математически это показал недавно Вячеслав Викторович Алексеев, который на основе расчетов пришел к следующим выводам: «Эволюция должна идти в направлении увеличения скорости обмена веществом в системе». И далее: «Становится понятным, почему образовались ферменты, роль которых заключается в резком увеличении скоростей реакций, идущих при обычных условиях исключительно медленно».
II биогеохимический принцип Вернадского получает подтверждения на самом разнообразном эмпирическом материале. Так, в 1956 г. почвовед Виктор Абрамович Ковда, ныне член-корреспондент АН СССР, обобщил результаты химического исследования более 1300 образцов золы современных высших растений. На этом обширнейшем фактическом материале автор пришел к выводу, что (за несколькими исключениями) зольность растений возрастает от представителей древних таксонов к более молодым. Эта закономерность свидетельствует о все более активном вовлечении растениями минеральных веществ в биогеохимический круговорот и является одним из частных проявлений II биогеохимического принципа. Вообще его проявления в биосфере очень многообразны и довольно неожиданны.
Возьмем другой пример из области ботаники.
Магаданский ботаник доктор биологических наук Андрей Павлович Хохряков недавно установил своеобразную направленность эволюции высших растений — интенсификацию смен органов в ходе индивидуального развития организма. Так, по мнению Хохрякова, у древних древовидных плаунов — лепидодендронов — смене была подвержена только часть листьев. У более продвинутых в эволюционном отношении растений — папоротникообразных — опадают также только листья, но у них в единицу времени по отношению к массе всего тела сменяется большая их часть, чем у лепидодендронов. У наиболее примитивных голосеменных — саговников — сменам также подвержены только листья, да и то за исключением оснований. У хвойных периодически сменяются ветви и кора. Наконец, на примере цветковых растений мы наиболее четко видим переход от многолетних форм (деревья и кустарники) к однолетним (травы). Этот же переход наблюдается и у других таксонов высших растений: среди древних хвощей и плаунов господствовали древовидные формы, а современные нам хвощи и плауны — травы; среди папоротников в геологическом прошлом было много древовидных, а сейчас древовидные папоротники вымирают. Такая интенсификация смен, естественно, приводит к усилению биогенной миграции атомов в биосфере. И здесь «работает» II принцип… Правда, хвойные почему-то не хотят становиться травами, а мхи, наоборот, никогда не были деревьями.
А. П. Хохряков, будучи ботаником, рассматривает только растения; в более широком плане подошел к вопросу о направленности эволюции крупный советский геохимик, профессор Александр Ильич Перельман. Он вычислил, что по отношению логарифмов ежегодной продукции к «моментальной биомассе» живого вещества (коэффициент К) современные экосистемы образуют следующий ряд:
I. Таежные ландшафты (0,54—0,55).
II. Ландшафты влажных лиственных лесов:
а) умеренного пояса (0,59—0,62);
б) субтропического пояса (0,66);
в) тропического пояса (0,68).
III. Травяные ландшафты (0,83—0,95).
Можно предполагать, что это — своеобразный «эволюционный ряд» ландшафтов и что несуществующие ныне ландшафты имели значение К меньше 0,5.
Наконец, III биогеохимический принцип также связан со «всюдностью» или «давлением» жизни. Этот фактор обеспечивает безостановочный захват живым веществом любой территории, где возможно нормальное функционирование живых организмов. В связи с этим рассмотрим, как происходило освоение жизнью поверхностной оболочки Земли.
В первые десятилетия нашего века ни у кого не было сомнений, что жизнь на Земле появилась лишь в кембрии, т. е., по современным датировкам, около 600 млн. лет назад. Честь открытия докембрийских микробиот принадлежит знаменитому американскому геологу Чарлзу Д. Уолкотту (1850—1927), высказавшему идею о бактериогенном происхождении докембрийских известняков и опубликовавшему в 1915 г. первую заметку с описанием остатков микроорганизмов из этих отложений. Идея Уолкотта показалась современникам абсурдной («этого не может быть, потому что не может быть никогда», используя крылатое выражение А. П. Чехова), а его описание докембрийских микроорганизмов не было принято всерьез. Сейчас Ч. Д. Уолкотта по праву называют пионером палеонтологии докембрия; учреждена специальная медаль «За изучение организмов докембрия», которая носит его имя.
Другим первооткрывателем докембрийских микробиот является В. Грюнер, в 1922 г. описавший органические остатки из протерозойских железорудных формаций штата Миннесота (США). Собственно, исследованиями Ч. Д. Уолкотта и В. Грюнера и исчерпывались сведения о докембрийской жизни к тому моменту, когда Вернадский сформулировал свой знаменитый тезис об отсутствии в истории Земли безжизненных геологических эпох.
Новый этап исследований начался в 40‑е годы. В 1939 г. изучением органических остатков докембрия начал заниматься А. Г. Вологдин (впоследствии — лауреат медали имени Уолкотта); в 1943 г. он организовал в Палеонтологическом институте АН СССР лабораторию по изучению древнейших организмов. В 1947 г. австралийский геолог Р. Спригг опубликовал первое описание фауны, впоследствии ставшей известной всему миру под названием «эдиакарской». Несколько лет спустя американские ученые С. А. Тайлер и Э. С. Бархгорн при микроскопическом исследовании протерозойских пород Канадского щита открыли хорошо сохранившиеся органические остатки.