Kniga-Online.club
» » » » Михаил Никитин - Происхождение жизни. От туманности до клетки

Михаил Никитин - Происхождение жизни. От туманности до клетки

Читать бесплатно Михаил Никитин - Происхождение жизни. От туманности до клетки. Жанр: Химия издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Когда в молекулу попадает фотон с подходящей энергией, он поглощается парой электронов, образующей химическую связь, и молекула переходит в возбужденное состояние с избыточной энергией. Возбужденных состояний как минимум два. Сначала молекула оказывается в неустойчивом и короткоживущем состоянии (так называемом синглетном состоянии). В нем спины электронов возбужденной пары еще антипараллельны, как и в спокойном состоянии молекулы. В синглетном состоянии молекула может сбросить возбуждение и вернуться в исходное состояние путем флюоресценции (излучения светового кванта с энергией чуть меньше исходной) или рассеяния энергии в тепло либо перейти в следующее – триплетное – состояние, в котором спины электронов становятся параллельными и химическая связь между атомами фактически разрывается. Если в молекуле была возбуждена одинарная связь, то молекула разрушается в этом месте. Если же была возбуждена двойная связь (точнее, так называемая пи-электронная система, образующая «вторые палочки» двойных связей), то молекула в триплетном состоянии сохраняет целостность, но становится бирадикалом – иными словами, у нее теперь имеются два неспаренных электрона, которые могут образовать две новые химические связи. Поэтому молекула в триплетном состоянии химически активна и вступает в разнообразные реакции. Например, молекулы этилена (С2H4), имеющие двойную связь между атомами углерода, при УФ-облучении частично объединяются попарно в циклобутан (С4H8), у которого вместо одной двойной связи образуются две одинарные связи между двумя дополнительными атомами углерода (рис. 6.2). Молекула может также вернуться из триплетного состояния в основное, невозбужденное путем излучения кванта света – фосфоресценции. В отличие от флюоресценции фосфоресценция может происходить спустя минуты и часы после облучения вещества, а разница в энергии поглощенного и излученного кванта света больше.

Так вот, у природных азотистых оснований синглетное состояние крайне короткоживущее. Оно легко рассеивает энергию возбуждения в тепло через колебания и вращение молекулы, обмен атомами водорода и другие механизмы и возвращается обратно в невозбужденное состояние. Синглетное состояние пуриновых оснований, аденина и гуанина, живет около 10–12 секунды – примерно в 10 000 раз меньше, чем синглетные состояния большинства молекул сравнимого размера и сложности, например аминокислоты триптофана. Благодаря быстрому рассеиванию энергии они из синглетного состояния практически всегда переходят в невозбужденное, а не в химически активное триплетное. А раз азотистые основания практически не попадают в триплетное состояние, то и разрушение их под действием ультрафиолета происходит очень редко.

Пиримидиновые основания, цитозин и тимин, рассеивают энергию несколько хуже, чем пурины, и, соответственно, менее устойчивы. Однако образование комплементарных пар улучшает рассеивание энергии еще примерно в 50 раз благодаря обмену протонами в водородных связях пары. Поэтому устойчивость комплементарной пары нуклеотидов к ультрафиолету выше, чем каждого из них по отдельности. Кроме того, в нуклеиновых кислотах плоские молекулы азотистых оснований лежат стопкой, поэтому их пи-электронные системы взаимодействуют между собой (так называемое стэкинг-взаимодействие) и могут передавать друг другу энергию возбуждения, еще усиливая рассеивание и дополнительно увеличивая устойчивость к ультрафиолету – до 20 раз по сравнению с одной комплементарной парой нуклеотидов (Mulkidjanian et al., 2003).

Азотистые основания не только сами устойчивы к ультрафиолету, они защищают соседние молекулы. Например, они предохраняют от УФ-расщепления фосфоэфирную связь (О-Р). При облучении УФ глицеролфосфата отщепление фосфорной кислоты происходит в 300 раз быстрее, чем при облучении аденозинмонофосфата, а образование комплементарных пар и стэкинг-взаимодействие в цепочке ДНК или РНК еще увеличивают степень защиты.

Таким образом, солнечный ультрафиолет, который в принципе разрушительно воздействует на нуклеотидную цепочку, как и на любые органические молекулы, может служить фактором отбора по следующим направлениям:

• отбор самых УФ-стойких азотистых оснований;

• отбор азотистых оснований, склонных образовывать комплементарные пары;

• отбор нуклеотидов одной хиральности из смеси правых и левых нуклеотидов (так называемой рацемической смеси), потому что смесь правых и левых нуклеотидов в цепочке нарушает стэкинг-взаимодействие;

• отбор длинных молекул РНК по сравнению с более короткими, потому что в длинных цепочках стэкинг-взаимодействие увеличивает устойчивость к ультрафиолету;

• отбор молекул РНК, содержащих двуспиральные участки (шпильки), среди молекул со случайными последовательностями, потому что в них больше нуклеотидов входят в состав комплементарных пар.

Минеральный состав живых клеток

Важную информацию об условиях обитания древнейших форм жизни мы можем получить из состава солей в современных клетках. Как это возможно?

Еще в 1920-х годах физиолог Арчибальд Макалум обратил внимание на то, что относительный состав солей в крови человека и других позвоночных очень похож на относительный состав солей в морской воде. Он так объяснил это наблюдение: первые животные возникли в море и поначалу не имели почек или других систем регуляции состава солей в межклеточных жидкостях своего тела. А к тому времени, когда у животных появились эффективные почки, многие процессы в разных органах уже были завязаны на «морской» состав солей в крови. Поэтому млекопитающие, предки которых вышли на сушу более 300 млн лет назад, до сих пор носят в крови соли в том же соотношении, что и их далекие предки, хотя на суше необходимые соли (прежде всего хлориды) в дефиците. Поэтому соленая пища, содержащая хлорид натрия, для нас более вкусна, чем пресная.

История минерального (солевого) состава клеток в чем-то аналогична. Так как первые клетки вряд ли были способны контролировать содержание неорганических солей (для этого требуются сложные липидные мембраны и энергозатратные системы активного транспорта), то солевой состав тех клеток должен был быть таким же, как в их окружающей среде. К этому солевому составу изначально приспосабливались первые РНК и белки, и затем менять его было бы уже слишком сложно.

Если сравнить содержание различных ионов в цитоплазме клеток и морской воде (табл. 6.1), бросается в глаза высокое содержание в клетках калия и низкое – натрия. Геологи уверены, что морская вода во все эпохи, как и сейчас, содержала мало калия и много натрия. В континентальных озерах, как пресных, так и соленых, «клеточные» пропорции ионов тоже не встречаются. Ближе всего к клеткам по соотношению калия и натрия оказываются воды некоторых геотермальных источников.

Другой особенностью ионного состава клеток оказывается высокая концентрация ионов переходных металлов, прежде всего железа и цинка, а также марганца и меди. Если железо широко распространено и в неживой природе, то медь, марганец и особенно цинк содержатся в клетках в очень большом количестве по сравнению с внешней средой. Концентрация цинка в клетках в миллион раз выше, чем в морской воде! Обогащение этими переходными металлами характерно для одной разновидности геотермальных источников – «черных курильщиков».

«Черные курильщики» были открыты в 1977 году при погружениях батискафа «Алвин» к срединно-океаническому хребту в Атлантике. Исследователям открылась поражающая воображение картина – торчащие из морского дна трубы, из которых валит густой черный дым (рис. 6.3). Это, конечно, не дым, а перегретая глубинная (так называемая геотермальная, ее источником являются химические процессы в нижних слоях земной коры и мантии) вода с температурой до 400 °C, которая не закипает из-за большого давления. Ее мутность и черный цвет обусловлены взвесью сульфидов металлов. При контакте геотермальной воды с океанской первая охлаждается, и из нее сначала выпадают сульфиды железа, меди и никеля, имеющие черный цвет. Из этих сульфидных осадков складываются трубы «черных курильщиков». При дальнейшем охлаждении, в диапазоне температур 200–300 °C, из воды выпадают сульфиды цинка и марганца, покрывающие белым ковром дно вокруг «черных курильщиков». Если геотермальная вода поднимается вверх относительно медленно, она успевает остыть до 300 °C еще до выхода в океан, и в этом случае образуются небольшие «белые курильщики», трубы которых сложены из сульфидов цинка и марганца. Кроме сульфидов переходных металлов геотермальная вода обогащена также сероводородом, калием и магнием и имеет щелочную реакцию.

«Черные курильщики» обладают и другими свойствами, полезными для зарождения жизни. Во-первых, минеральные осадки в них образуются из частиц микронного (0,001 мм) размера и пронизаны громадным количеством пор. Эти поры по размеру соответствуют бактериальным клеткам и образуют сложный лабиринт, в котором могут в относительной изоляции размножаться разные доклеточные формы жизни. Во-вторых, сульфидные минералы, которые откладываются вокруг «черного курильщика», являются отличными катализаторами разных химических реакций, в том числе ведущих к синтезу аминокислот и других клеточных веществ. Более того, в состав многих современных клеточных ферментов входят неорганические кластеры – наночастицы некоторых минералов. И это именно те минералы, которые образуются в «черных курильщиках»: пирит FeS2, макинавит (Fe, Ni) S, грейгит Fe5NiS8, виоларит FeNi2S4 (Russell et al., 2014, таблица на с. 14). В-третьих, в «черных курильщиках» и других геотермальных источниках существуют устойчивые мощные градиенты температуры и химического состава, т. е. неравновесные условия, которые, как мы помним из прошлой главы, совершенно необходимы для жизни. Хотя современные организмы используют химические градиенты, для первых живых организмов мог быть полезен и устойчивый перепад температур. В условиях перепада температур растворенные крупные молекулы, такие как РНК и белки, могут двигаться от тепла к холоду. Это явление называется «термофорез». Оно объясняется большей энергией частиц в нагретых зонах и, соответственно, их большими импульсами, направляющими частицы из нагретых зон в холодные. Это явление используется для концентрирования РНК и других молекул.

Перейти на страницу:

Михаил Никитин читать все книги автора по порядку

Михаил Никитин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Происхождение жизни. От туманности до клетки отзывы

Отзывы читателей о книге Происхождение жизни. От туманности до клетки, автор: Михаил Никитин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*