Коллектив авторов - Строение и история развития литосферы
Объяснительная записка к тектонической карте Баренцева моря и северной части Европейской России масштаба 1:2 500 000. М.: ИЛОВМ РАН. 1996. 94 с.
Столбов Н.М., Устинов Н.В., Голубкова Е.Ю. Какого возраста отложения складчатого фундамента архипелага Земля Франца-Иосифа? // Геолого-геофизические характеристики литосферы Арктического региона. Министерство природных ресурсов Российской Федерации, Всероссийский Научно-исследовательский институт геологии и природных ресурсов Мирового океана. С.Пб.: ВНИИОкеангеология. 2006. Т. 210. Вып. 6. С. 145–148.
Сущевская Н.М., Евдокимов А.Н., Маслов В.А., Кузьмин Д.В. Генезис базальтовых магм четвертичных вулканов архипелага Шицберген // Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» 2004. Т. 22. № 1. С. 1–4.
Хаин В.Е. Тектоника континентов и океанов (год 2000). М.: Научный Мир. 2001. 606 с.
Хуторской М.Д., Леонов Ю.Г., Ермаков А.В., Ахмедзянов В.Р. Аномальный тепловой поток и природа желобов в северной части свальбардской плиты // Докл. РАН. 2009. Т. 424. № 2. С. 227–233.
Чамов, Н.П., Добролюбова К.О., Пейве, А.А., Соколов С.Ю. Признаки присутствия газогидратов в верхней части осадочного чехла на бортах разломной зоны Моллой (пролив Фрама, Норвежско-Гренландский бассейн) // Бюлл. МОИП. Отд. Геол. 2008. Т. 83. Вып. 2. С. 51–60.
Шипилов Э.В., Тарасов Г.А. Региональная геология нефтегазоносных осадочных бассейнов Западно-Арктического шельфа России. Апатиты: КНЦ РАН. 1998. 306 с.
Шлыкова В.В., Казанин Г.С., Павлов С.П., Ступакова А.В., Голынчик П.О., Сафронова П.А. Сейсмостратиграфическая характеристика осадочного чехла Южно-Шпицбергенского шельфа и перспективы нефтегазоносности // Разведка и охрана недр. 2008. № 8. С. 39–44.
Geology of Franz Josef Land (edited by V.D. Dibner). Norsk Polarinstitutt. Meddelelse No. 146. Oslo. 1998. 190 p.
IBCAO (International Bathymetric Chart of Arctic Ocean). 2005. (http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html).
Hjelstuen B.O., Eldholm O., Faleide J. I. Recurrent Pleistocene mega-failures on the SW Barents Sea margin // Earth and Planetary Science Letters. 2007. V. 258. Pp. 605–618.
Ljones F., Kuwano A., Mjelde R., Breivika A., Shimamura H., Murai Y., Nishimura Y. Crustal transect from the North Atlantic Knipovich Ridge to the Svalbard Margin west of Hornsund // Tectonophysics. 2004. V. 378. Pp. 17–41
Murdmaa I., Ivanova E., Duplessy J., Levitan M., Khusid T., Bourtman M., Alekhina G., Alekseeva T., Belousov M., Serova V. Facies system of the Eastern Barents Sea since the last glaciation to present // Marine Geology. 2006. V. 230. Pp. 275–303.
Olesen, O. G., Gellein J., Brekke H. et al. Magnetic anomaly map, Norway and adjacent ocean areas. Scale 3 million. Geological Survey of Norway. 1997.
Smith D.G., Harland W. B., Hughes N. F., Pickton C.A.G. The geology of Kong Karls Land, Svalbard // Geological Magazine. 1976. V. 113. №. 3. Pp. 193–304.
The Geology of Svalbard (ed. – W. B. Harland). Geological Society, London, Memoir No. 17. 1997. 521 p.
Vanneste M, Guidard S., Mienert J. Вottom simulating reflection and geothermal gradients across the western Svalbard Margin // Terra Nova. 2005. V. 17. Iss. 6. Pp. 510–516.
Vanneste M., Mienert J. Bünz S. The Hinlopen Slide: A giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean // Earth and Planetary Science Letters. 2006. V. 245. Is. 1–2. Pp. 373–388
Winkelmann, D., Stein R., Triggering of the Hinlopen/Yermak Megaslide in relation to paleoceanography and climate history of the continental margin north of Spitsbergen // Geochem. Geophys. Geosyst. (G3). 2007. V. 8. № 6. Pp. 1–15. (An electronic journal of the earth sciences doi:10.1029/2006GC001485).
A. V. Zayonchek[81], H. Brekke[82], S. Yu. Sokolov[83], A.O. Mazarovich[84], K.O. Dobrolyubova[85], V. N. Efimov[86], A. S. Abramova[87], Yu. A. Zaraiskaya[88], A.V. Kokhan[89], E. A. Moroz[90], A. A. Peive[91], N.P. Chamov[92], K. P. Yampol’skii[93]. The Structure of Continent-Ocean transition zone at North-West Barents Sea Margin (results of 24–26-th cruises of RV «Akademik Nikolaj Strakhov», 2006–2009)
Abstract
Three geological-geophysical expeditions on R/V «Akademik Nikolaj Strakhov» in 2006–2009 (Geological Institute RAS, Norwegian Petroleum Directorate) resulted in detailed mapping by acoustic methods for significant areas of Knipovich ridge, southern slope of Mohn ridge, Storfjord and Orli troughs, continental slope and Franz-Joseph Land vicinity with total survey length about 22 000 km. Were discovered: northward zone of Svalbard shelf plate destruction, outcrops of dyke complexes and other volcanogeneous edifices on the shelf, gas hydrates release occurrences, modern tectonic displacements on continental slope and in sedimentary cover of Knipovich and Mohn ridges boards and many other facts. North-West margin of Barents sea shelf exposes the similarity with rift onshore structures at Northern areas of Spitzbergen Island, that could show the uniform conditions of their formation, and with the consideration of the data from neighbors areas at deep ocean gives the basis for development of model, connecting the geodynamic processes at continental and oceanic lithosphere.
Ю.Г. Леонов[94], М.Д. Хуторской[95]
Желоб Орла (Стурё) – элемент новейшей геодинамики внешней зоны Баренцевоморского шельфа
Аннотация
Приводятся результаты измерения теплового потока в северной части Свальбардской плиты вблизи архипелагов Земля Франца-Иосифа и Шпицберген и геодинамическая интерпретация полученных данных. Измерения выполнялись с помощью новой модификации геотермического зонда «ГЕОС-М». Получено 7 измерений на полигоне «ЗФИ» и 20 – на полигоне «Шпицберген». На первом из полигонов вариации теплового потока от 30 до 85 мВт/м2 связаны как с тектонической активизацией трога Франц-Виктория, так, возможно, и со структурно-теплофизическими неоднородностями в разрезе осадочного чехла. Аномальные значения теплового потока (от 120 до 519 мВт/м2), измеренные в троге Орла (Стурё) (восточнее Северо-Восточной Земли архипелага Шпицберген), в сочетании с другими геологическими данными, свидетельствуют о развитии здесь рифтовой зоны, вызывающей деструкцию континентальной коры в зоне взаимодействия континентальной и океанической литосферы. Исследования проводились при финансовой поддержке Норвежского нефтяного директората, Президиума РАН, Отделения наук о Земле РАН и РФФИ.
1. Вводные замечания: район и организация работ, измерительная аппаратура, геотермическая характеристика акватории Баренцева моря
Свальбардская континентальная окраина, включающая, кроме шельфа и континентального склона, также островную сушу архипелага Шпицберген (Свальбард), представляет собой северо-западную часть более крупного элемента – Баренцевоморской континентальной окраины. Эта область привлекает внимание во многих отношениях. В том числе она дает интереснейший материал для изучения вообще слабо исследованного вопроса, и в особенности для пассивных окраин, о взаимосвязи тектонических процессов в континентальной и океанической литосфере.
Одним из опорных источников информации о тектонике и геодинамическом режиме этой области служат геотермические данные. В этой связи в 2007 году, в ходе экспедиции, проведенной Геологическим институтом РАН на НИС «Академик Николай Страхов» в рамках программы МПГ 2007/08, выполнена геотермическая съемка на двух полигонах в неизученных ранее районах шельфа Баренцева моря: к западу от архипелага Земля Франца-Иосифа (полигон ЗФИ) и к востоку от о-ва Северо-Восточная Земля архипелага Шпицберген (полигон Шпицберген) (рис. 1). Параллельно с геотермической съемкой, в ходе упомянутой экспедиции и на тех же объектах проведено детальное исследование рельефа морского дна и верхней части осадочного чехла; соответствующие данные, важные и для рассматриваемого в данной статье исследования, приведены в предыдущей статье настоящего сборника (А.В.Зайончек и др.).
Экспедиция была проведена при финансовой поддержке Норвежского нефтяного Директората, программы Президиума РАН («Фундаментальные проблемы океанологии», проект «Сравнительное изучение эволюции и современной структуры континентальных окраин Восточной Атлантики и Арктики») и программы Отделения наук о Земле РАН («История формирования бассейна Северного Ледовитого океана и режим современных природных процессов Арктики»), а также проекта РФФИ № 05-05-00016. Результаты исследования в более сжатом варианте опубликованы в работе (Хуторской и др., 2009); здесь эти материалы изложены с дополнениями.
Рис. 1. Геотермическая изученность Баренцевского региона. Точки – станции измерения и значения теплового потока (мВт/м2); оконтурены районы работ 25-го рейса НИС «Академик Николай Страхов»: полигоны ЗФИ (см. рис. 3) и Шпицберген (см. рис. 4).
Геотермическая изученность Баренцевоморской плиты, в особенности ее Свальбардской части, до настоящего времени остается невысокой.
Впервые геотермические работы были выполнены по профилю п-ов Рыбачий – Земля Франца Иосифа в 1976 году во время 23-го рейса НИС «Академик Курчатов» (Методические…, 1983). Применявшаяся тогда аппаратура (одноканальный автономный термоградиентограф ПТГ-3МТБ) не позволяла фиксировать ряд таких важных параметров, как придонная температура воды, угол вхождения зонда в донные осадки, форма термограммы. Относительная погрешность измерений оценивалась в 30–40 %. Полученные записи не позволяли отфильтровать степень влияния экзогенной волны, обусловленной периодическими колебаниями температуры у дна и придонными течениями.
В 1980-е годы, в связи с развитием бурения в Арктике, были получены первые кондиционные измерения теплового потока по термокаротажным данным в Баренцевом и Карском морях (Цыбуля, Левашкевич, 1992) и данные по оценке значений градиентов температуры и теплопроводности пород. Впоследствии эти данные были уточнены (Левашкевич, 2005). В те же годы Геологическим институтом КНЦ РАН были получены измерения теплового потока в южной и центральной частях Баренцева моря двухканальным автономным зондом ТГЦП. Площадные наблюдения сопровождались режимными наблюдениями за температурой морского дна на нескольких опорных станциях. Это позволило с помощью специально разработанного алгоритма (Левашкевич, 2005) оценить глубинную компоненту теплового потока и количественно учесть влияние периодических колебаний температуры дна.