Геология океана: загадки, гипотезы, открытия - Конюхов Александр Иванович
Между тем основные технические проблемы, стоявшие перед создателями проекта глубоководного бурения, были как будто преодолены, и первое буровое судно такого типа, оснащенное ЭВМ и системой спутниковой навигации, вышло в море. В честь знаменитого предшественника, положившего начало научным изысканиям в океане, оно было названо «Гломаром Челленджером».
Первая точка для глубоководного бурения была выбрана в Мексиканском заливе, во впадине Сигсби, где геофизики установили присутствие на дне крупных куполов, как предполагалось образованных соляными диапирами. Бурение, проводившееся у подножия подводного уступа Сигсби, оправдало надежды специалистов и дало блестящие результаты. Буровая колонна проникла на глубину 770 м, что позволило отобрать керн осадков и пород в той части морского дна, которая дотоле оставалась «белым пятном» (впрочем, как и почти весь океан) на геологической карте.
В первом рейсе «Гломара Челленджера» был опробован и отлажен весь комплекс механизмов бурения и управления этим процессом. В следующих рейсах стали изучать строение осадочной линзы на континентальных окраинах и собственно океанского ложа, сначала в Северной и Центральной Атлантике и в восточных районах Тихого океана, которые были к тому времени наиболее полно исследованы геофизическими методами.
Буровое оборудование не обеспечивало проходку очень крепких пород, в частности горизонтов кремней, достаточно широко распространенных в верхней части осадочного чехла абиссальных котловин. Поэтому глубина проходки скважин в первые годы осуществления проекта глубоководного бурения не превышала нескольких сот метров. Проблема заключалась в невозможности смены бура, который быстро изнашивался при бурении с непрерывным отбором керна. Трудности возникали, собственно говоря, не столько со сменой оборудования, сколько с необходимостью вторичного попадания в ствол уже начатой бурением скважины. Поэтому если проходку последней по каким-либо причинам, из-за шторма или технических неполадок, приходилось прерывать, то команда судна была вынуждена закладывать новую скважину в соседней с предыдущей точке.
Нередко, чтобы выполнить первоначальную задачу и достичь расчетной глубины бурения, приходилось начинать проходку второго, третьего и даже четвертого ствола. При этом к номеру скважины прибавлялся соответственно индекс А, В и С. В дальнейшем проблема смены износившегося оборудования с продолжением бурения в том же стволе была решена. На дне стали помещать акустический маяк, подававший сигналы на поверхность.
В точке бурения вместе с ним устанавливалась гигантская, до 20 м в диаметре, воронка, сужающаяся к устью скважины. Поэтому буровая колонна, вторично опускавшаяся с борта судна, должна была попасть уже не в крошечную дыру на дне, а в створ довольно большой воронки, оборудованной акустическим датчиком.
Однако, как говорилось выше, эта система была разработана позднее. В первых же рейсах «Гломара Челленджера» предпочитали разбуривать те участки океанского дна, где мощность осадочного чехла относительно невелика, — районы срединно-океанических хребтов и прилегающие к ним части абиссальных котловин. К концу 1971 г. было пробурено около 200 скважин в различных районах Мирового океана. Главным результатом этой гигантской работы было подтверждение основных мобилистских идей. Надо отметить, что очень скоро проект глубоководного бурения приобрел международный статус. В соответствии с межправительственным соглашением и другими документами, регулировавшими научный обмен между СССР и США, во многих рейсах «Гломара Челленджера» участвовали советские ученые — морские геологи, геохимики, океанологи, литологи и другие специалисты, в том числе такие известные исследователи, как А. П. Лисицын, П. П. Тимофеев, В. А. Крашенинников, И. О. Мурдмаа, Ю. А. Богданов и др.
Научная кооперация на борту «Гломара Челленджера» и в послерейсовые периоды обработки полученных материалов принесла важные научные плоды. Уровень лабораторного исследования и интерпретации материалов оставался неизменно высоким многие годы, а их результаты публиковались уже через год после завершения очередного рейса. Голубовато-зеленые тома, издававшиеся по этим рейсам, стали одним из наиболее читаемых изданий.
Структура океана
Итак, каждый рейс «Гломара Челленджера» все шире приоткрывал завесу над тайнами океана. Постепенно начинала вырисовываться структура океанского дна, совершенно непохожая на ту, какой ее себе представляли геологи, работавшие на континентах. Здесь нужны были новые исследования. Однако главное можно было считать установленным: дно океана было повсеместно молодым. Ведь даже в периферийных районах Атлантического и Тихого океанов в основании осадочного чехла бур «Гломара Челленджера» вскрыл отложения не старше мелового и позднеюрского возраста. Последние залегали на базальтах фундамента, Которые сформировались практически в то же время. Таким образом, возраст океанского ложа не превышал 150—180 млн лет. Это ничтожно мало по сравнению с докембрийским возрастом пород, слагающих фундамент кратонов на континентах и выступающих на поверхность в пределах Балтийского, Канадского, Бразильского, Анабарского и других щитов: 1—2 млрд лет для протерозойских и 3—3,5 млрд лет для архейских образований.
Молодость фундамента в океанах можно было объяснить лишь его спредингом — формированием в рифтовых зонах срединно-океанических хребтов. Однако поговорим вначале о строении самой океанической коры.
Океаническая и континентальная кора: антиподы или разные стадии развития литосферы?Земная кора — многослойное образование. Верхнюю ее часть — осадочный чехол, или первый слой,— образуют осадочные породы и не уплотненные до состояния пород осадки. Ниже как на континентах, так и в океанах залегает кристаллический фундамент. В его строении и кроются основные различия между континентальным и океаническим типами земной коры. На континентах в составе фундамента выделяются два мощных слоя — «гранитный» и базальтовый. Под абиссальным ложем океанов «гранитный» слой отсутствует. Однако базальтовый фундамент океана отнюдь не однороден в разрезе, он разделяется на второй и третий слои.
До сверхглубокого и глубоководного бурения о структуре земной коры судили главным образом по геофизическим данным, а именно по скоростям продольных и поперечных сейсмических волн. В зависимости от состава и плотности пород, слагающих те или иные слои земной коры, скорости прохождения сейсмических волн значительно изменяются. В верхних горизонтах, где преобладают слабо уплотненные осадочные образования, они относительно невелики, в кристаллических же породах резко возрастают по мере увеличения их плотности.
После того как в 1949 г. впервые были измерены скорости распространения сейсмических волн в породах ложа океана, стало ясно, что скоростные разрезы коры континентов и океанов весьма различны. На небольшой глубине от дна, в фундаменте под абиссальной котловиной, эти скорости достигали величин, которые на материках фиксировались в самых глубоких слоях земной коры. Вскоре выяснилась причина подобного несоответствия. Дело в том, что кора океанов оказалась поразительно тонкой. Если на континентах толщина земной коры составляет в среднем 35 км, а под горно-складчатыми системами даже 60 и 70 км, то в океане она не превышает 5—10, редко 15 км, а в отдельных районах мантия находится почти у самого дна.
Стандартный скоростной разрез континентальной коры включает верхний, осадочный слой со скоростью продольных волн 1—4 км/с, промежуточный, «гранитный» — 5,5—6,2 км/с и нижний, базальтовый — 6,1—7,4 км/с. Ниже, как полагают, залегает так называемый перидотитовый слой, входящий уже в состав астеносферы, со скоростями 7,8—8,2 км/с. Названия слоев носят условный характер, так как реальные сплошные разрезы континентальной коры никто до сих пор не видел, хотя Кольская сверхглубокая скважина проникла в глубь Балтийского щита уже на 12 км.