Под знаком кванта - Леонид Иванович Пономарёв
Но, может быть, именно поэтому в час полуночи, когда бесшумно распахивается окно в звездную бездну, человеком вдруг овладевает пронзительное чувство покинутости на крохотном островке в океане Вселенной. Он вдруг отчетливо сознает всю хрупкость феномена жизни, чудом прикрепившейся к тонкой застывшей корке раскаленной изнутри планеты, летящей вокруг Солнца в двадцать раз быстрее артиллерийского снаряда. Отчаяние таких минут человеку помогают преодолеть лишь древнее тепло очага, глаза детей и рука друга.
В былые времена спасение от страха перед небом искали и находили в религии. В наш просвещенный век концы логических умозаключений и очевидных следствий точного знания не принято топить в бездонном колодце веры. Нам дают силы сознание своей принадлежности к роду человеческому и вера в его еще не ясное предназначение, восхищение мощью его разума и смирение перед лицом познанных им законов.
СВЕТ СОЛНЦА
Странно, что вопрос об источниках энергии Солнца, по-видимому, мало занимал не только древних философов, но даже таких ученых нового времени, как Лаплас и Гершель. Сейчас хорошо известно, что за пределами атмосферы каждую секунду на квадратный сантиметр поверхности Земли лучи Солнца приносят энергию 0,135 Дж, то есть 0,135 Вт/см2. Расстояние до Солнца R = 150 млн. км, или 1,5-1013 см, то есть полная мощность излучения Солнца равна
4л/?2-0,135 = 4л(1,5« 1013)2 - 0,135 = 3,8 -1026 Вт.
Это огромная энергия: чтобы получить ее, нужно каждую секунду сжигать 1,3-1016 т угля — в тысячу раз больше, чем все его известные запасы на Земле. Поэтому если бы Солнце светило за счет горения угля, то при массе 2 • 1033 г его хватило бы только на
(2-1033)/(1,3-1022) =1,5.10,1’*с = 5«103 лет
— всего на 5 тыс. лет. Несуразица очевидная, но только в 1845 г. на нее обратил внимание открыватель закона сохранения энергии Роберт Майер (1814—1878). Сам Майер в 1848 г. полагал, что энергия Солнца объясняется его столкновениями с метеорами. Предлагались и другие объяснения: Герман Гельмгольц в 1854 г. видел источник энергии Солнца в его постепенном сжатии, а Джеймс Джинс объяснил ее слиянием протонов и электронов.
Открытие радиоактивности изменило направление мыслей ученых, и, хотя спектроскоп бесстрастно свидетельствовал об отсутствии на Солнце радия, мысль о «субатомном» источнике его энергии в начале века стала общепринятой. Тот же спектроскоп сообщил, что Солнце состоит в основном из водорода и гелия, поэтому, как только стали известны точные измерения Астона для масс атомов, английский астрофизик Артур Стэнли Эддингтон (1882—1944) сразу же сказал, что излучение Солнца — это энергия слияния четырех ядер водорода в ядро гелия.
В 1920 г. у этой гипотезы было много противников, цключая и Резерфорда. В лаборатории Кавендиша ему только что удалось осуществить первую ядерную реакцию, и он лучше других знал, насколько это трудно. «Звезды недостаточно горячи для этого»,— возражал Резерфорд. «Найдите местечко Погорячее»,— советовал ему Эддингтон (намекая на жар в аду) и добавлял: «То, что доступно лаборатории имени Кавендиша, не может быть слишком трудным для Солнца». Однако до создания квантовой механики эмоции мало могли помочь в разрешении этого спора.
В 1929 г., вскоре после объяснения Гамовым квантовой природы явления а-распада, выпускники Гёттингенского университета Рудольф Аткинсон и Фриц Хоутерманс указали, что при температурах около 20 млн. градусов протоны за счет туннельного эффекта могут преодолеть кулоновский барьер отталкиванид^легких ядер и войти в состав нового ядра, выделив при этом довольно большую энергию связи, которая вполне может обеспечить длительную светимость Солнца. Но и эта догадка была несколько преждевременной: пройдет еще 10 лет, прежде чем Ганс Альбрехт Бете (р. 1906 г.) построит последовательную теорию ядерного горения в звездах.
За это время было сделано несколько фундаментальных открытий, без которых его теория была бы невозможной:
1931 г. —Вольфганг Паули высказал гипотезу о сущест
вовании нейтрино—нейтральной безмассовой частицы v.
1932 г. — Гарольд Клейтон Юри открыл тяжелый изотоп
водорода дейтерий d (Нобелевская премия 1934 г.).
— Джеймс Чэдвик открыл нейтрон п (Нобелевская премия 1935 г.).
— Карл Дэйвид Андерсон открыл позитрон е + (Нобелевская премия 1936 г.).
— Дмитрий Дмитриевич Иваненко выдвинул гипотезу о протонно-нейтронной структуре ядра.
1933 г. — Энрико Ферми создал теорию p-распада ядер
и ввел в физику новый тип взаимодействий — слабое.
1934 г. — Ирэн и Фредерик Жолио-Кюри открыли искус
ственную радиоактивность и p-распад протонов в ядрах на нейтрон, позитрон и нейтрино (Нобелевская премия 1935 г.).
Кроме того, за 10 лет квантовая механика стала необходимым и привычным инструментом исследования в атомной и ядерной физике, в физике кристаллов и теоретической химии, а понятия «сечение ядерной реакции» и «резонанс» вошли в повседневный научный обиход.
Опираясь на эти достижения, Георгий Гамов и Эдвард Теллер смогли в 1938 г. осмысленно повторить оценки Аткинсона и Хоутерманса и отнестись к ним серьезно. В апреле 1938 г. Гамов собрал в Вашингтоне небольшую конференцию с участием астрофизиков и ядерных физиков, на которой присутствовали Карл Вейцзеккер и Ганс Бете. Вскоре после этого появились их знаменитые статьи об источниках энергии звезд, которые в 1939 г. завершились обстоятельной работой Бете (Нобелевская премия 1967 г.). Теория Бете проверялась и уточнялась вплоть до середины 50-х годов, и в настоящее время ее суть можно изложить довольно просто. («Нет ничего проще звезды»,— любил повторять Эддингтон.)
В недрах Солнца, где давление достигает 100 млрд, атмосфер, плотность свыше 100 г/см3, а температура — 13—14 млн. градусов, происходит последовательность реакций, известная теперь как протон-протонный или водородный цикл ядерных реакций в звездах:
р + р -^d + е+ + V + 1,442 МэВ (1,3 • 10юлет)
d + р —»-3Не + у + 5,494 МэВ (6с)
3Не + 3Не -^4Не + 2р +12,86МэВ (106лет)
4р -*4Не + 2е+ + 2v + 2 у +• 26,73 МэВ
Самая длительная стадия — первая: пройдет 13 млрд, лет, прежде чем протон найдет себе пару и образует