Kniga-Online.club

Мичио Каку - Гиперпространство

Читать бесплатно Мичио Каку - Гиперпространство. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

68

Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 327.

69

Процитировано в: Криз и Манн «Второе сотворение», с. 417.

70

Питер ван Ньювенхейзен «Супергравитация». См: «Суперсимметрии и супергравитации», под ред. Якоба (М. Jacob, Supersymmetry and Supergravity, Amsterdam: North Holland, 1986), c. 794.

71

Процитировано в: Криз и Манн «Второе сотворение», с. 419.

72

Процитировано в: Коул «Теория всего» (К. С. Cole, A Theory of Everything, New York Times Magazine, 18 October 1987), c. 20.

73

Джон Хорган «Суперструнный искуситель» (John Horgan, The Pied Piper of Superstrings, Scientific American, November 1991), c. 42, 44.

74

Процитировано в: Коул «Теория всего», с. 25.

75

Дэвид Гросс, интервью. См.: «Суперструны», под ред. Дэвиса и Брауна, с. 150.

76

В бумажной книге пропущено примечание. — Прим. верст.

77

Виттен, интервью. См.: «Суперструны», под ред. Дэвиса и Брауна, с. 95.

Виттен подчеркивает, что у Эйнштейна были основания формулировать общую теорию относительности, начиная с физического принципа — принципа эквивалентности (согласно которому гравитационная масса и инертная масса объекта одинаковы, поэтому все тела независимо от их величины падают на землю с одной и той же скоростью). Однако аналог принципа эквивалентности для теории струн еще не найден.

Как отмечает Виттен, «было ясно, что теория струн, в сущности, служит логически последовательной структурой, охватывающей и гравитацию, и квантовую механику. В то же время концептуальная основа, обеспечивающая понимание этой теории, аналогичная принципу эквивалентности, который Эйнштейн обнаружил в своей теории гравитации, пока не появилась» (там же, с. 97).

Вот почему в настоящее время Виттен разрабатывает так называемые топологические теории поля, т. е. теории, совершенно независимые от нашего способа измерения расстояний. Есть надежда, что эти топологические теории поля могут соответствовать некой «неоткрытой разновидности теории струн», т. е. теории, находящейся за пределами планковской длины.

78

Гросс, интервью. См.: «Суперструны», под ред. Дэвиса и Брауна, с. 150.

79

Джон Хорган «Суперструнный искуситель», с. 42.

80

Рассмотрим компактификацию для полностью гетеротической струны, которой свойственно два типа колебаний: одно — в полном 26-мерном пространстве-времени, второе — в обычном 10-мерном пространстве-времени. Поскольку 26–10 = 16, можно предположить, что 16 из 26 измерений свернуты, т. е. «компактифицированы» с образованием некой системы, в итоге у нас остается десятимерная теория. Всякий, кто пройдется по любому из этих 16 направлений, в конечном итоге вернется в ту же точку.

Питер Фройнд предположил, что группа симметрии для этого 16-мерного компактицифированного пространства — группа Е (8) x Е (8). Быстрая проверка подтверждает, что эта симметрия значительно обширнее и что к ней относится группа симметрии Стандартной модели SU (3) SU (2) x U (1).

Словом, ключевое выражение 26–10 = 16. Оно означает, что, если мы компактифицируем 16 из первоначальных 26 измерений гетеротической струны, у нас появится 16-мерное компактное пространство с остаточной симметрией Е (8) x Е (8). Но согласно теории Калуцы-Клейна, частица, вынужденная существовать в компактифицированном пространстве, неизбежно наследует симметрию этого пространства. Значит, колебания струны должны преобразовываться согласно группе симметрии Е (8) x Е (8).

В итоге можно сделать вывод, что теория группы показывает: данная группа гораздо обширнее, чем группа симметрии, появляющаяся в Стандартной модели, следовательно, может включать Стандартную модель как малую подсистему десятимерной теории.

81

Несмотря на то что теория супергравитации определена в 11 измерениях, масштабы этой теории все равно недостаточны, чтобы вместить все взаимодействия частиц. Крупнейшая группа симметрии для супергравитации — 0(8), а она слишком мала, чтобы вместить симметрии Стандартной модели.

На первый взгляд кажется, что 11-мерная супергравитация обладает большим числом измерений, следовательно, большей симметрией, чем 10-мерная суперструна. Однако это лишь видимость, потому что гетеротическая струна начинается с компактификации 26-мерного пространства до уровня 10-мерного пространства, в итоге у нас остается 16 компактифицированных измерений, которые дают группу Е (8) x Е (8). Этого с избытком хватает для размещения Стандартной модели.

82

Виттен, интервью. См.: «Суперструны», под ред. Дэвиса и Брауна, с. 102.

83

Отметим, что предлагались и другие альтернативные непертурбативные подходы к струнной теории, однако они не такие прогрессивные, как струнная теория поля. Один из самых смелых — «универсальное пространство модулей», попытка проанализировать свойства струнных поверхностей с бесконечным количеством отверстий в них. (К сожалению, никто не знает, как выполнять вычисления для поверхности такого рода.) Еще один вариант — метод ренормализационной группы, которым на данный момент можно воспроизводить только поверхности без отверстий (древовидные схемы). Есть также матричные модели, на данный момент определяемые не более чем для двух измерений.

84

Для того чтобы понять смысл этой таинственной двойки, вспомним, что у луча света два физических режима колебаний. Поляризованный свет может вибрировать, допустим, либо в горизонтальном, либо в вертикальном направлении. У релятивистского поля Максвелла  четыре компонента, где μ = 1, 2, 3, 4. Мы вправе вычесть два из этих четырех компонентов, пользуясь калибровочной симметрией уравнений Максвелла. Поскольку 4–2 = 2, первоначальные четыре поля Максвелла сведутся к двум. Так и релятивистская струна колеблется в 26 измерениях, но два из этих режимов колебания теряются, когда мы нарушаем симметрию струны, в итоге у нас остается 24 режима колебания, которые и фигурируют в функции Рамануджана.

85

Процитировано в: Годфри Харди «Рамануджан» (Godfrey Н. Hardy, Ramanujan, Cambridge: Cambridge University Press, 1940), c. 3.

86

Процитировано в: Джеймс Ньюмен «Мир математики» (James Newman, The World of Mathematics, Redmond, Wash.: Tempus Books, 1988), с. 1: 363.

87

Харди «Рамануджан», c. 9.

88

Харди «Рамануджан», с. 10.

89

Харди «Рамануджан», с. 11.

90

Харди «Рамануджан», с. 12.

91

Джонатан Борвейн и Питер Борвейн «Рамануджан и пи» (Jonathan Borwein and Peter Borwein, Ramanujan and Pi, Scientific American, February 1988), c. 112.

92

Дэвид Гросс, интервью. См.: «Суперструны: Теория всего?», под ред. Пола Дэвиса и Джулиана Брауна (Paul Davies and J. Brown, ed., Superstrings: A Theory of Everything? Cambridge: Cambridge University Press, 1988), c. 147.

93

Шелдон Глэшоу «Взаимодействия» (Sheldon Glashow, Interactions, New York: Warner, 1988), c. 335.

94

Шелдон Глэшоу «Взаимодействия» (Sheldon Glashow, Interactions, New York: Warner, 1988), с. 333.

95

Шелдон Глэшоу «Взаимодействия» (Sheldon Glashow, Interactions, New York: Warner, 1988), с. 330.

96

Стивен Вайнберг «Мечты об окончательной теории» (Steven Weinberg, Dreams of a Final Theory, New York: Pantheon, 1992), c. 218–219.

97

Бозон Хиггса был открыт в 2012 г. коллаборациями ATLAS и CMS Большого адронного коллайдера, и Питер Хиггс получил свою заслуженную Нобелевскую премию годом позже. На сегодняшний день неясно, открыт ли бозон Хиггса Стандартной модели или это лишь первый из нескольких членов семейства, предсказываемых расширениями СМ. — Прим. науч. ред.

98

Процитировано в: Джон Д. Барроу и Фрэнк Типлер «Антропный космологический принцип» (John D. Barrow and Frank J. Tipler, The Anthropic Cosmological Principle, Oxford: Oxford University Press, 1986), c. 327.

99

Процитировано в: Фрэнк Вильчек и Бетси Дивайн «Стремление к гармонии» (F. Wilczek and В. Devine, Longing for the Harmonies, New York: Norton, 1988), c. 65.

100

Пер. Г. Варденги. — Прим. пер.

101

Джон Апдайк «Космическая наглость» (John Updike, Telephone Poles and Other Poems, New York: Knopf, 1960).

102

Процитировано в: Коул «Теория всего» (К. C. Cole, А Theory of Everything, New York Times Magazine, 18 October 1987), c. 28.

Перейти на страницу:

Мичио Каку читать все книги автора по порядку

Мичио Каку - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Гиперпространство отзывы

Отзывы читателей о книге Гиперпространство, автор: Мичио Каку. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*