Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан
Шквал электронной почты
На следующее утро я получил по электронной почте письмо от Строминджера, спрашивавшего о моей реакции на его статью. Он упомянул, что эта статья «должна быть как-то связана с Вашей работой вместе с Аспинуоллом и Моррисоном». Как выяснилось, он тоже исследовал возможную связь с эффектом изменения топологии. Я немедленно написал ему, очертив грубую схему, к которой мы с Моррисоном пришли накануне. Его ответ показал, что он возбуждён не меньше, чем мы с Моррисоном после вчерашней встречи.
На протяжении следующих нескольких дней между нами троими циркулировал непрерывный поток электронной почты: мы лихорадочно пытались строго на цифрах обосновать идею о радикальном изменении топологии при разрыве пространства. Медленно, но верно, всё вставало на свои места. К следующей среде, через неделю после того, как Строминджер опубликовал свой результат в Интернете, у нас был набросок совместной статьи, в котором описывалось новое поразительное преобразование структуры пространства после коллапса трёхмерной сферы.
На следующий день у Строминджера был запланирован доклад на семинаре в Гарварде, и рано утром он вылетел из Санта-Барбары. Мы договорились, что Моррисон и я будем оттачивать последние детали нашей статьи и к вечеру пошлём её в электронный архив. К 23:45 я проверил и перепроверил все наши вычисления — всё прекрасно сходилось. Поэтому я отослал статью и отправился в корпус физики. Пока мы с Моррисоном шли к машине (я собирался подбросить его до дома, который он снял до конца семестра), наш разговор перешёл в спор, в котором мы сами для себя играли роль критиков, изо всех сил пытающихся доказать, что наши результаты неверны. Пока мы выруливали со стоянки и выезжали с территории университета, мы поняли, что при всей силе и убедительности нашей аргументации, она не является совершенно пуленепробиваемой. Никто из нас не сомневался, что работа безошибочна, но нам пришлось признать, что сила наших доводов и отдельные выбранные нами словесные формулировки в некоторых местах статьи могут дать повод для яростных споров, завуалировав важность полученных результатов. Мы сошлись на том, что при подготовке статьи следует придерживаться более скромной позиции и снизить напор наших доводов: это позволило бы физикам самим оценить достоинства статьи, не втягиваясь в возможные дискуссии по поводу того, в какой форме наши результаты представлены.
По дороге Моррисон напомнил мне, что по правилам электронного архива мы можем редактировать статью до двух ночи, после чего она будет выложена для общего доступа. Я немедленно повернул машину, и мы помчались обратно в корпус физики. Мы забрали первоначальный вариант статьи и стали думать о том, как смягчить её стиль. К счастью, всё было довольно просто. Замена нескольких слов в особо ответственных параграфах сгладила резкие углы нашей аргументации без ущерба для содержания работы. Через час мы отослали статью снова и договорились не упоминать о ней всю дорогу до дома Моррисона.
Ещё до полудня следующего дня стало ясно, что реакция на статью весьма активная. Среди многих ответов по электронной почте было и письмо Плессера. В нём содержалась наивысшая похвала, которой один физик может удостоить другого: «Как жаль, что эта мысль пришла в голову не мне!». Несмотря на наши опасения предыдущей ночи, нам удалось убедить сообщество физиков в том, что структура пространства может подвергаться не только открытым ранее умеренным разрывам (см. главу 11), но и гораздо более сильным, изображённым на рис. 13.3.
Снова о чёрных дырах и элементарных частицах
Есть ли у всего этого какая-нибудь связь с чёрными дырами и элементарными частицами? Таких связей множество. Чтобы это понять, нужно задаться тем же вопросом, что и в главе 11. К каким наблюдаемым следствиям приведут такие разрывы структуры пространства? Для флоп-перестроек, обсуждавшихся выше, неожиданно оказывается, что нет практически никаких наблюдаемых последствий. В случае конифолдных переходов— такое название мы дали недавно переходам с сильным разрывом пространства, — как и ранее, не происходит никакой физической катастрофы (она случилась бы в традиционной теории относительности), но здесь имеется больше ярко выраженных наблюдаемых последствий.
Наблюдаемые последствия основаны на двух связанных идеях. Рассмотрим их по очереди. Во-первых, как обсуждалось выше, суть исходной работы Строминджера состояла в открытии того, что трёхмерная сфера внутри пространства Калаби–Яу может коллапсировать без возникновения катастрофы, так как обёртывающая её 3-брана служит надёжным защитным экраном. Но как выглядит эта конструкция с обёрнутой вокруг сферы 3-браной? Ответ даёт более ранняя работа Хоровица и Строминджера, в которой показано, что для существ типа нас с вами, органам чувств которых прямо доступны лишь три развёрнутых пространственных измерения, «оборачивающиеся» вокруг трёхмерной сферы 3-браны предстанут в виде гравитационного поля сродни полю чёрной дыры. {114} Этот факт неочевиден, и становится ясен только после тщательного изучения описывающих браны уравнений. Здесь, как и выше, сложно изобразить многомерную конфигурацию на двумерном рисунке, но примерное представление по аналогии с двумерными сферами можно получить из рис. 13.4. Видно, что двумерная мембрана может обернуться вокруг двумерной сферы (которая сама покоится внутри пространства Калаби–Яу, находящегося в некоторой точке пространства развёрнутых измерений). Некто, наблюдающий эту точку сквозь развёрнутые измерения, почувствует брану по её массе и заряду, и, как показали Хоровиц и Строминджер, судя по этим характеристикам, сможет сделать вывод, что перед ним чёрная дыра. Кроме того, в основополагающей работе 1995 г. Строминджер показал, что масса 3-браны, т. е. масса чёрной дыры, пропорциональна объёму трёхмерной сферы, которую она обёртывает. Чем больше объём сферы, тем больше должна быть обёртывающая её 3-брана, и тем больше её масса. Аналогично, чем меньше объём сферы, тем меньше масса обёртывающей её 3-браны. По мере сжатия сферы обёртывающая её 3-брана, которая выглядит, как чёрная дыра, становится легче. В момент, когда трёхмерная сфера стягивается в точку, соответствующая чёрная дыра (соберитесь с духом!) становится безмассовой. На первый взгляд, это совершенно непостижимо (что это ещё за безмассоваячёрная дыра?), но чуть ниже мы свяжем этот загадочный феномен со знакомой физикой струн.

Рис. 13.4.Когда брана обёртывает сферу, покоящуюся в свёрнутых измерениях, она выглядит как чёрная дыра в обычных пространственных измерениях
Во-вторых, напомним, что, как обсуждалось в главе 9, число отверстий многообразия Калаби–Яу определяет число низкоэнергетических (а, следовательно, имеющих малую массу) колебательных мод струны, которыми могут описываться перечисленные в табл. 1.1 частицы, а также типы взаимодействий. Но так как при конифолдных переходах с разрывом пространства число отверстий меняется (например, как на рис. 13.3, где отверстие тора исчезло в процессе разрыва/восстановления), можно ожидать и изменения числа колебательных мод малой массы. Действительно, после того, как Моррисон, Строминджер и я тщательно изучили этот вопрос, мы обнаружили, что при замещении сжимающейся трёхмерной сферы в свёрнутых измерениях Калаби–Яу двумерной сферой число безмассовых колебательных мод струны возрастает ровно на единицу. (Пример, приведённый на рис. 13.3, где баранка превращается в мяч, может создать ложную иллюзию, что число отверстий, а, следовательно, и число мод, уменьшается. На самом деле, это артефакт маломерной аналогии.)
Чтобы связать идеи, описанные в двух предыдущих параграфах, представим себе последовательность снимков пространства Калаби–Яу при постепенном уменьшении размеров некоторой сидящей внутри трёхмерной сферы. Из первой идеи следует, что масса 3-браны, обёртывающей трёхмерную сферу и кажущейся нам чёрной дырой, будет уменьшаться и станет равной нулю в момент коллапса. Теперь, пользуясь второй идеей, мы можем ответить на поставленный выше вопрос о том, что означает обращение массы в ноль. Согласно нашей работе, новая безмассовая колебательная мода струны, возникающая при конифолдном переходе с разрывом пространства, на микроскопических масштабах описывает безмассовую частицу, в которую превращается чёрная дыра. Вывод такой: при эволюции многообразия Калаби–Яу, сопровождающейся конифолдным переходом с разрывом пространства, изначально ненулевая масса чёрной дыры уменьшается до нуля, после чего чёрная дыра превращается в безмассовую частицу (подобную фотону), которая на языке теории струн описывается определённой колебательной модой струны. Таким образом, в теории струн впервые удаётся установить прямую, точную и количественно неопровержимую связь между чёрными дырами и элементарными частицами.