Мичио Каку - Физика невозможного
Фримен Дайсон был более красноречив: «Гёдель доказал, что мир чистой математики неисчерпаем; никакое конечное число аксиом и логических правил не в состоянии охватить всю математику... Я надеюсь, что аналогичная ситуация существует и в мире физики. Если мой взгляд на будущее верен, то мир физики и астрономии тоже неисчерпаем; не важно, сколько пройдет времени, — мы всегда будем наблюдать новые явления и получать новую информацию; всегда будут появляться новые миры, которые можно исследовать, — постоянно расширяющиеся владения жизни, сознания и памяти».
Астрофизик Джон Барроу так обобщил этот логический подход: «Наука основана на математике; математика не в состоянии раскрыть все истины; следовательно, наука не в состоянии раскрыть все истины».
Подобные аргументы могут быть верны или неверны, но потенциальные недостатки у такой точки зрения имеются. Профессиональные математики по большей части игнорируют в своей работе теорему о неполноте. Дело в том, что теорема о неполноте начинает с анализа утверждений, которые ссылаются сами на себя; в логике такие утверждения называют самоотносимыми. Приведем примеры парадоксальных утверждений:
Это высказывание ложно.
Я лжец.
Это утверждение невозможно доказать.
В первом случае, если высказывание истинно, это значит, что оно ложно. Если высказывание ложно, то само утверждение истинно. Точно так же и во втором: если я говорю правду, это означает, что я лгу; а если я лгу, то я говорю правду. В последнем случае, если высказывание истинно, то доказать его истинность невозможно.
(Второе высказывание—это знаменитый парадокс лжеца. Критский философ Эпименид обычно иллюстрировал этот парадокс следующим утверждением: «Все критяне лжецы». Однако св. Павел не уловил смысла этого высказывания и написал в послании к Титу: «Из них же самих один стихотворец сказал: "Критяне всегда лжецы, злые звери, утробы ленивые". Свидетельство это справедливо».)
Теорема о неполноте строится на утверждениях вроде «Это высказывание нельзя доказать при помощи аксиом арифметики» и сплетает сложную паутину подобных самоотносимых парадоксов.
Хокинг, однако, использует теорему о неполноте, чтобы показать, что теория всего невозможна. Он утверждает, что ключ к теореме Гёделя ?—тот факт, что математика вообще самоотносима и что физика тоже страдает этой болезнью. Наблюдателя невозможно изолировать от процесса наблюдения; это означает, что физика всегда будет ссылаться сама на себя — ведь мы не в состоянии покинуть Вселенную. В конце концов, наблюдатель тоже состоит из атомов и молекул, а потому неизбежно является составной частью и участником эксперимента, который проводит.
Но существует способ обойти возражения Хокинга. Чтобы не сталкиваться с парадоксами, присущими теореме Гёделя, профессиональные математики сегодня поступают очень просто: они заранее исключают из своей работы самоотносимые высказывания. В этом случае теорему о неполноте можно обойти. Вообще, взрывное развитие математики со времен Гёделя в значительной степени достигнуто за счет игнорирования его теоремы о неполноте, т. е. за счет постулирования того факта, что последние работы не допускают самоотносимых высказываний.
Точно так же может оказаться возможным сформулировать теорию всего, которая объяснит все известные экспериментальные данные вне зависимости от бесконечного спора об отделении наблюдателя от наблюдаемого явления. Если такая теория всего сможет объяснить все, начиная с Большого взрыва и заканчивая сегодняшней видимой Вселенной, то будет уже неважно, как именно мы опишем взаимодействие между наблюдателем и наблюдаемым. Более того, можно говорить об одном из критериев правильности такой теории: ее выводы должны быть совершенно независимы от того, как именно мы разделяем наблюдателя и наблюдаемое.
Скажем больше. Природа может быть беспредельной и неисчерпаемой, даже если она основана всего на нескольких принципах. Рассмотрим шахматную партию. Попросите пришельца с другой планеты определить правила только из наблюдений за игрой. Через некоторое время пришелец сможет уверенно сказать, как ходят пешки, слоны и короли. Правила игры просты и конечны. Но вариантов в ней поистине астрономическое количество. Точно также законы и правила природы, возможно, просты и конечны, но приложения этих правил могут оказаться неисчерпаемыми. Наша цель — отыскать эти правила.
В определенном смысле у нас уже есть полная теория многих явлений. Никто никогда не видел, чтобы нарушались уравнения Максвелла для света. Стандартную модель часто называют теорией почти всего. Представьте на мгновение, что мы можем исключить гравитацию. В этом случае Стандартная модель становится вполне надежной теорией всех явлений, за исключением гравитации. Может быть, эта теория некрасива, но она работает. Даже теорема о неполноте не мешает нам обладать разумной теорией всего (за исключением гравитации).
Мне представляется поистине замечательным, что на одном листе бумаги можно записать законы, которые управляют всеми известными физическими явлениями в пределах 43 порядков по величине — от дальних пределов космоса на расстоянии более 10 млрд световых лет до микромира кварков и нейтрино. На этом листе будет всего две формулы: теория гравитации Эйнштейна и Стандартная модель. По-моему, это говорит об абсолютной простоте и гармонии природы на фундаментальном уровне. Вселенная могла оказаться неправильной, случайной или непостоянной. Но мы видим, что на самом деле она едина, гармонична и красива.
Нобелевский лауреат Стив Вайнберг сравнивает наши поиски теории всего с поисками Северного полюса. На протяжении веков древние моряки пользовались картами, на которых Северный полюс просто отсутствовал. Стрелки всех компасов, все маршруты указывали на этот отсутствующий кусок карты, но в реальности никому не удавалось там побывать. Точно так же все наши данные и теории безошибочно указывают на теорию всего. Ее не хватает нам для полноты уравнений.
Всегда будут существовать вещи, лежащие далеко за пределами возможностей нашей науки; объекты и явления, которые невозможно исследовать (к примеру, точное положение электрона или мир, существующий по ту сторону скорости света). Но я убежден, что фундаментальные законы познаваемы и конечны. И ближайшие годы могут стать самыми интересными в истории физики — ведь нам предстоит исследовать Вселенную при помощи нового поколения ускорителей частиц, космических детекторов гравитационных волн и других новых технологий. Мы не в конце пути; скорее мы стоим на пороге новой физики. Но, что бы мы ни обнаружили, за любыми достижениями непременно откроются новые горизонты. Они ждут нас.
Примечания
1
Причина кроется в законах квантовой механики. Вводя в некую теорию все возможные квантовые поправки (утомительный процесс, известный как «перенормировка»), мы нередко обнаруживаем, что явления, которые раньше (на классическом уровне) казались запрещенными, снова появляются на горизонте и их необходимо принимать в расчет. Это означает, что любое явление, не запрещенное явным образом (к примеру, одним из законов сохранения), после введения квантовых поправок может вновь попасть в поле зрения ученых.
2
Во 2-й книге «Государства» Платон писал: «Ни один из них [обладателей перстня невидимости] не оказался бы настолько твердым, чтобы остаться в пределах справедливости и решительно воздержаться от присвоения чужого имущества и не притрагиваться к нему, хотя каждый имел бы возможность без всякой опаски брать что угодно на рыночной площади, проникать в дома и сближаться с кем вздумается, убивать, освобождать из заключения кого захочет — вообще действовать среди людей так, словно он равен богу... Если человек, овладевший такою властью, не пожелает когда-либо поступить несправедливо и не притронется к чужому имуществу, он всем, кто это заметит, покажется в высшей степени жалким и неразумным...»
3
Кроме того, нацисты направили экспедицию в Индию для исследования некоторых мифологических утверждений индуизма (примерно как в сюжете фильма «Искатели утраченного ковчега»). Нацистов очень интересовало описанное в «Махабхарате» странное и весьма мощное оружие, в том числе летательный аппарат.
4
Подобные фильмы стали также причиной распространения множества ложных представлений о лазерах. На самом деле лазерный луч невидим; видимым он становится только в том случае, если рассеивается частицами пыли в воздухе. Поэтому когда Тому Крузу в фильме «Миссия невыполнима» приходится пробираться сквозь паутину лазерных лучей, лучи эти по идее должны были бы быть невидимыми, а не красными, как в фильме. Кроме того, во многих кинематографических сражениях с применением лучевого оружия мы видим, как лазерный импульс летит через комнату — а это невозможно, поскольку свет лазера движется, понятно, со скоростью света 300 000 км/с.