Kniga-Online.club
» » » » Ли Смолин - Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует

Ли Смолин - Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует

Читать бесплатно Ли Смолин - Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Но имеются другие пути унификации мира. Эйнштейн, который определенно думал об этом более любого другого, подчеркивал, что мы должны различать два вида теорий. Это теории принципов и конструктивные теории. Теория принципов устанавливает систему взглядов, которая делает возможным описание природы. По определению, теория принципов должна быть универсальной: она должна быть применима ко всему, поскольку она устанавливает основной язык, который мы используем, чтобы говорить о природе. Не может быть двух различных теорий принципов, применимых к различным областям природы. Поскольку мир един, все, в конечном счете, взаимодействует со всем другим, и может быть только один язык, используемый для описания этих взаимодействий. Квантовая теория и общая теория относительности обе являются теориями принципов. Раз так, логика требует их объединения.

Другой вид теорий, конструктивные теории, описывают некоторые отдельные явления в терминах специфических моделей или уравнений.[1] Теория электромагнитного поля и теория электрона есть конструктивные теории. Такие теории не могут устанавливаться в одиночестве; они должны быть встроены в контекст теории принципов. Но до тех пор, пока теория принципов не появилась, могут существовать явления, подчиняющиеся различным законам. Например, электромагнитное поле подчиняется законам, отличным от законов, управляющих теоретически допустимой космологической темной материей (ее количество, как полагают, значительно превышает количество ординарной атомной материи в нашей вселенной). Одна из вещей, которую мы знаем о темной материи независимо от того, что она из себя представляет, это то, что она темная. Это означает, что она не испускает света, так что она, вероятно, не взаимодействует с электромагнитным полем. Поэтому две различные теории могут сосуществовать бок о бок.

Дело в том, что законы электромагнетизма не диктуют, что еще может существовать в мире. Там могут быть кварки или нет, нейтрино или нет, темная материя или нет. Аналогично, законы, которые описывают два взаимодействия – сильное и слабое, – которые действуют внутри атомных ядер, не обязательно требуют, чтобы там были и электромагнитные силы. Мы можем легко представить мир, в котором есть электромагнетизм, но нет сильного ядерного взаимодействия, или наоборот.

Но все еще возможно спросить, не могут ли силы, которые мы наблюдаем в природе, быть проявлениями единственной, фундаментальной силы. Тут кажется, насколько я могу судить, нет логических аргументов, что это должно быть верно, но это все еще является чем-то, что может быть верным.

Страстное желание объединить различные силы привело к нескольким существенным продвижениям в истории физики. Джеймс Клерк Максвелл в 1867 объединил электричество и магнетизм в одну теорию, а столетием позже физики обнаружили, что электромагнитное поле и поле, которое распространяет слабые ядерные силы (силы, отвечающие за радиоактивный распад), могут быть объединены. Такой теорией стала электрослабая теория, предсказания которой раз за разом подтверждались в экспериментах на протяжении последних тридцати лет.

Имеются две фундаментальных силы природы (из тех, что мы знаем), которые остаются за пределами объединения электромагнитных и слабых сил. Это гравитация и сильное ядерное взаимодействие, отвечающее за связь между собой частиц, именуемых кварками, чтобы сформировать протоны и нейтроны, составляющие атомные ядра. Можно ли объединить все четыре фундаментальные силы?

Это наша третья великая проблема.

ПРОБЛЕМА 3: Определить, могут или нет различные частицы и силы быть объединены в теорию, которая объясняет их все как проявление единственной, фундаментальной сущности.

Назовем эту проблему проблемой объединения частиц и сил, чтобы отличить ее от унификации законов, которую мы обсудили ранее.

Во-первых, эта проблема легко появилась. Первое предположение, как объединить гравитацию с электричеством и магнетизмом, было сделано в 1914, и с тех пор было предложено намного больше. Все они работают, пока вы забываете одну вещь, что природа является квантовомеханической. Если вы исключаете квантовую физику из картины, унифицирующие теории легко придумываются. Но если вы включаете квантовую теорию, проблема становится намного, намного более тяжелой. Поскольку гравитация является одной из четырех фундаментальных сил природы, мы должны решить проблему квантовой гравитации (то есть, проблему номер 1: как примирить ОТО и квантовую теорию) вместе и параллельно с проблемой унификации.

За последнее столетие наше физическое описание мира значительно упростилось. Раз уж речь идет о частицах, они проявляются только в двух видах: кварки и лептоны. Кварки являются составляющими протонов и нейтронов и многих частиц, которые мы аналогично им открыли. Класс лептонов охватывает все частицы, не состоящие из кварков, включая электроны и нейтрино. Обобщая, известный мир объясняется шестью видами кварков и шестью видами лептонов, которые взаимодействуют друг с другом посредством четырех сил (или, как их еще называют, взаимодействий): гравитации, электромагнетизма, и слабых и сильных ядерных взаимодействий.

Двенадцать частиц и четыре взаимодействия это все, что нам нужно, чтобы объяснить все что угодно в известном мире. Мы также очень хорошо понимаем основную физику этих частиц и сил. Это понимание выражено в терминах теории, которая применима для всех этих частиц и всех сил, исключая гравитацию. Она называется стандартной моделью физики элементарных частиц – или стандартной моделью, для краткости. Эта теория не имеет отмеченных ранее проблем с бесконечностями. Все, что мы хотим рассчитать в этой теории, мы можем рассчитать, и результаты выражаются в конечных числах. За более чем тридцать лет с момента формулирования стандартной модели многие предсказания этой теории были экспериментально проверены. В каждом и любом случае теория подтверждалась.

Стандартная модель была сформулирована в начале 1970х. За исключением открытия, что нейтрино имеют массу, она не требовала до сих пор корректировки. Так почему физики не стало после 1975? Что осталось сделать?

При всей ее полезности стандартная модель имеет большую проблему. Она имеет длинный список подгоночных констант. Когда мы устанавливаем законы теории, мы должны определить величины этих констант. Насколько мы знаем, могут быть использованы любые величины, поскольку теория математически состоятельна вне зависимости от того, какие величины мы в нее вставляем. Эти константы определяют свойства частиц. Некоторые говорят нам о массах кварков и лептонов, другие говорят нам о величине сил. У нас нет идей, почему эти числа имеют ту величину, какую имеют, мы просто определяем их через эксперименты, а затем подставляем числа в теорию. Если вы подумаете о стандартной модели как о калькуляторе, то константы будут вводимыми числами, такими, что может быть набор любых позиций, которые вам нравятся, каждый раз, когда программа запускается на выполнение.

Имеется около двадцати таких констант, и тот факт, что имеется так много свободно определяемых констант, которые должны быть подставлены в фундаментальную теорию, является жутким затруднением. Каждая константа представляет некоторый основополагающий факт, который мы игнорируем: а именно, физический механизм или основания, отвечающие за выбор константы в ее наблюдаемой величине.

Это наша четвертая большая проблема.

ПРОБЛЕМА 4: Объяснить, как в природе выбираются величины свободных констант в стандартной модели физики частиц.

Есть глубокая надежда, что правильная единая теория частиц и сил даст однозначный ответ на этот вопрос.

В 1900м Вильям Томсон (лорд Кельвин), влиятельный британский физик, лихо объявил, что физика закончилась, исключая два маленьких облачка на горизонте. Эти "облачка" оказались ключами, которые привели нас к квантовой теории и теории относительности. Сегодня, даже если мы празднуем включение всех известных явлений в стандартную модель плюс ОТО, мы тоже осознаем два облачка. Это темная материя и темная энергия.

Отдельно от проблемы соотношения гравитации с квантами мы думаем, что мы очень хорошо понимаем гравитацию. Предсказания ОТО находятся в согласии с наблюдениями с очень большой степенью точности. Наблюдения по этим вопросам простираются от падающих тел и света на Земле, до детализированного движения планет и их лун, до масштабов галактик и скоплений галактик. Совершенно экзотические явления – вроде гравитационного линзирования, эффекта искривления пространства материей – сегодня настолько хорошо поняты, что используются для измерения распределений масс в скоплениях галактик.

Во многих случаях – когда скорости малы по сравнению со световой и массы не слишком компактны – ньютоновские законы гравитации и движения обеспечивают превосходное приближение к предсказаниям ОТО. Определенно, они должны нам помогать предсказывать, как массы звезд и другой материи в соответствующей галактике влияют на движение отдельной звезды. Но они не предсказывают. Гравитационный закон Ньютона говорит, что ускорение любого объекта при его обращении относительно другого пропорционально массе тела, вокруг которого он обращается. Чем тяжелее звезда, тем быстрее орбитальное движение планеты. Это означает, что если вокруг двух звезд обращаются планеты, и планеты находятся на одинаковых расстояниях от своих звезд, планета, обращающаяся вокруг более массивной звезды, будет двигаться быстрее. Таким образом, если вы знаете скорость тела на орбите вокруг звезды и его дистанцию до звезды, вы можете измерить массу этой звезды. То же самое сохраняется для звезд, обращающихся вокруг центра галактики; путем измерения орбитальной скорости звезд вы можете измерить распределение массы в этой галактике.

Перейти на страницу:

Ли Смолин читать все книги автора по порядку

Ли Смолин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует отзывы

Отзывы читателей о книге Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует, автор: Ли Смолин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*