Kniga-Online.club
» » » » Александр Виленкин - Мир многих миров. Физики в поисках иных вселенных.

Александр Виленкин - Мир многих миров. Физики в поисках иных вселенных.

Читать бесплатно Александр Виленкин - Мир многих миров. Физики в поисках иных вселенных.. Жанр: Физика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Алхимики пытались получить золото из более распространенных элементов, но, как мы теперь знаем, есть весьма серьезные причины, не позволившие им достичь успеха. Чтобы превратить один элемент в другой, надо научиться изменять состав атомных ядер. Однако энергии частиц, необходимые для ядерных трансформаций, в миллионы раз больше тех, что связаны с химическими реакциями, и выходят далеко за пределы того, что было доступно алхимикам. Такие энергии достигаются в водородной бомбе, но ни в каких естественных процессах на Земле они не встречаются. Поэтому наблюдаемая нами сегодня распространенность элементов в точности такова, как и 4,6 миллиарда лет назад, в эпоху формирования Солнечной системы.[24]

Вопрос о происхождении элементов естественным образом наводит на мысль о недрах звезд. Эти гигантские раскаленные газовые шары скрепляются силами гравитации. Наше Солнце состоит в основном из водорода — простейшего элемента, ядра которого представляют собой одиночные протоны. Температура в центральных областях Солнца превышает 10 миллионов градусов — этого достаточно для протекания ядерных реакций. Цепочка реакций преобразует водород в гелий с выделением энергии, которая питает наше светило. Теория ядерных реакций, происходящих в недрах Солнца, была разработана в конце 1930-х годов Гансом Бете, физиком немецкого происхождения, который позднее получил за эту работу Нобелевскую премию. Однако для объяснения распространенности элементов его теория мало что давала. Производство гелия в звездах обеспечивает лишь малую долю от его огромного количества, наблюдаемого во Вселенной. Другой загадкой было присутствие дейтерия (тяжелого водорода), у которого очень хрупкие ядра. Они быстро разрушаются в горячих звездных недрах, и было трудно понять, откуда они вообще могли взяться.

Гамов придерживался мнения, что звезды попросту недостаточно горячи, чтобы стать той кухней, в которой готовились элементы, — он считал, что придумал идею получше: подходящей печью он считал саму Вселенную вскоре после Большого взрыва. Для изучения ядерных процессов в горячей ранней Вселенной Гамов обратился за помощью к двум молодым физикам — Ральфу Альферу и Роберту Херману. Они рассмотрели горячую смесь нуклонов, электронов и излучения, однородно заполняющую Вселенную. Когда температура падает до 1 миллиарда градусов, протоны и нейтроны могут соединиться, образуя ядра дейтерия (рис. 4.1). Последующие присоединения протонов и нейтронов быстро превращают дейтерий в гелий (ядра которого содержат по два протона и нейтрона). Однако на этом образование ядер фактически останавливается. Дело в том, что из-за некоторых особенностей ядерных сил стабильных ядер, состоящих из пяти нуклонов, не существует, а одновременное присоединение более чем одного нуклона крайне маловероятно. Это так называемый пятинуклонный провал. Расчеты показывают, что около 23% нуклонов входят в состав ядер гелия, а почти все остальные остаются в форме водорода. Образуется также небольшое количество дейтерия и лития.[25]

 

Рис. 4.1. Простейшие атомные ядра.

Протоны и нейтроны обозначаются соответственно p и n.

Современный анализ, опирающийся на самые последние данные о ядерных реакциях и суперкомпьютерные модели, дает точные значения распространенности элементов после того, как они покинули космическое горнило. То, насколько хорошо результаты этих вычислений согласуются с астрономическими наблюдениями, весьма впечатляет. Астрономы могут определять химический состав далеких объектов, изучая спектр испущенного ими света. Теория горячего Большого взрыва твердо предсказывает, что ни одна галактика во Вселенной не должна содержать меньше двадцати трех процентов гелия: поскольку он производится в звездах, его первоначальная распространенность может только возрастать. И действительно, ни одной такой галактики до сих пор не обнаружено. Предсказанная распространенность дейтерия — чуть меньше одной десятитысячной, лития — менее одной миллиардной. Весьма примечательно, что столь сильно различающиеся значения подтверждаются наблюдениями. Можно было бы сказать, что 23% гелия — это просто счастливая догадка, но вероятность случайного совпадения целого набора чисел крайне низка.

Но как обстоят дела с тяжелыми элементами? Несмотря на все усилия, Гамов и его команда не смогли найти мост через пятинуклонный провал. Тем временем по другую сторону Атлантики главный защитник модели стационарного состояния Фред Хойл разрабатывал альтернативную теорию происхождения элементов. Он знал, что звезды, которые подобно нашему Солнцу пережигают водород в гелий, недостаточно горячи для этой задачи. Но что происходит, когда звезда исчерпывает свой водород? Тогда она больше не может противостоять собственной гравитации, ядро звезды начинает сжиматься, а его плотность и температура возрастают. После того как в центре температура достигает 100 миллионов градусов, открывается новый канал ядерных реакций: три ядра гелия сливаются и образуют ядро углерода. Когда весь гелий в центральной области израсходован, звезда сжимается дальше, пока температура не поднимется настолько, чтобы запустить реакции ядерного горения углерода. По мере развития этого процесса образуется слоистая структура, в которой более тяжелые элементы находятся ближе к центру (поскольку для их приготовления требуются более высокие температуры). В звездах, подобных Солнцу, этот процесс не заходит слишком далеко, но в более массивных светилах он проделывает весь путь вплоть до образования железа. За этой точкой топлива для ядерного горения не остается. Не поддерживаемая больше ядерными реакциями внутренняя часть ядра звезды коллапсирует, достигая невероятной плотности и температуры около 10 миллиардов градусов. Это приводит к гигантскому взрыву, называемому вспышкой сверхновой, при котором все внешние слои, содержащие наработанные элементы, выбрасываются межзвездное пространство. Элементы тяжелее железа образуются во время коллапса и взрыва ядра. Обогащенный межзвездный газ служит сырьем для новых звезд и планетных систем. Получавшаяся по расчетам Хойла и его сотрудников распространенность тяжелых элементов хорошо согласовывалась с наблюдениями.

Хойл и Гамов разрабатывали свои идеи в 1940-х и 1950-х годах, и тогда их теории рассматривались как две конкурирующие модели происхождения элементов. Однако в итоге оказалось, что оба они были правы: легкие элементы образовались преимущественно в ранней Вселенной, а тяжелые — в звездах. Почти все известное вещество Вселенной находится в форме водорода и гелия, а на долю тяжелых элементов приходится менее 2%. Но они тем не менее исключительно важны для нашего существования: Земля, воздух и наши тела состоят в основном из тяжелых элементов. Как писал кембриджский астрофизик Мартин Рис, "Мы — звездная пыль, пыль давно умерших звезд".[26]

Космические микроволны

Процесс образования гелия начинается примерно через 3 минуты ПБВ и завершается менее чем за минуту. Вселенная продолжает расширяться в чудовищном темпе, а плотность и температура очень быстро падают. Но после насыщенных событиями первых минут темп космической драмы замедляется. С частицами вещества мало что происходит, наиболее значительные изменения касаются наполняющего огненный шар излучения.

На микроскопическом, квантовом уровне излучение состоит из фотонов, однако макроскопически его можно изображать состоящим из электромагнитных волн — колеблющихся узоров электрической и магнитной энергии. Волны разной частоты вызывают разные физические эффекты, и мы знаем их под разными названиями. Видимому свету соответствует лишь узкая полоска во всем электромагнитном спектре. Волны с более высокой частотой называют рентгеновским излучением, а еще более высокочастотные — гамма-лучами. Двигаясь по частотам вниз, мы встретим микроволны, а за ними радиоволны. Все они распространяются со скоростью света.

По мере убывания температуры огненного шара интенсивность излучения снижается, а его частота постепенно сдвигается от гамма-лучей через рентгеновский диапазон к видимому свету. Важное событие происходит примерно через 300 000 лет ПБВ, когда температура становится достаточно низкой, чтобы электроны и ядра могли объединяться в атомы. До этого электромагнитные волны часто рассеивались на заряженных электронах и ядрах. Однако с нейтральными атомами излучение взаимодействует очень слабо, так что после образования атомов волны начинают свободно распространяться по Вселенной, практически ни на чем не рассеиваясь. Другими словами, Вселенная вдруг становится прозрачной для света. Что случится после этого с космическим излучением? Ничего особенного, кроме того, что частота электромагнитных волн и соответствующая ей температура продолжат убывать по мере расширения Вселенной. В момент образования нейтральных атомов температура излучения составляла 4 000 градусов, немного ниже, чем на поверхности Солнца. Если бы мы оказались там и смогли выдержать столь нездоровые условия, то увидели бы Вселенную залитой ярко-оранжевым светом. К моменту 600 000 лет ПБВ мы заметили бы, что цвет сменился на красный. Около одного миллиона лет излучение смещается за пределы видимого диапазона, в инфракрасную часть спектра. Так что для нас Вселенная погрузилась бы в полную темноту. Частота волн продолжает медленно уменьшаться, и к настоящему времени, которое соответствует космическому возрасту около 14 миллиардов лет, она опускается до микроволнового диапазона.

Перейти на страницу:

Александр Виленкин читать все книги автора по порядку

Александр Виленкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Мир многих миров. Физики в поисках иных вселенных. отзывы

Отзывы читателей о книге Мир многих миров. Физики в поисках иных вселенных., автор: Александр Виленкин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*