Kniga-Online.club
» » » » Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Читать бесплатно Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Симметрия играет центральную роль в фазовых переходах. Почти во всех случаях, если вы сравните подходящие измерения симметрии чего-либо до и после того, как это что-либо пройдет через фазовый переход, вы найдете существенное изменение. На молекулярных масштабах, например, лед имеет кристаллическую форму, в которой молекулы Н2О расположены в упорядоченной гексагональной решетке. Подобно симметриям ящика на Рис. 8.1, полный рисунок молекул льда остается неизменным только при определенных специальных преобразованиях, таких как вращения на угол 60 градусов относительно отдельных осей гексагонального расположения. Напротив, когда мы нагреем лед, кристаллическое расположение расплавится в беспорядочную однородную массу молекул, – жидкую воду, – которая остается неизменной при вращениях на любой угол относительно любой оси. Итак, путем нагревания льда и побуждения его перейти через фазовый переход твердое тело/жидкость, вы делаете его более симметричным. (Вспомним, что хотя вы можете интуитивно подумать, что нечто более упорядоченное, как лед, является и более симметричным, правильным является совершенно противоположное; нечто более симметрично, если оно может быть подвергнуто большему числу преобразований, таких как вращения, при которых его внешний облик остается неизменным).

Аналогично, если мы нагреваем жидкую воду и она переходит в газообразный пар, фазовый переход также приводит к росту симметрии. В массе воды индивидуальные молекулы Н2О, в среднем, упакованы так, что водородная сторона одной молекулы соседствует с кислородной стороной ее соседки. Если вы повернули ту или иную молекулу в массе воды, она будет заметно нарушать молекулярный узор. Но когда вода выкипает и переходит в пар, молекулы летают здесь и там свободно; тут нет больше никакого узора ориентаций молекул Н2О, и отсюда, когда вы поворачиваете молекулу или группу молекул, газ будет выглядеть тем же самым. Итак, точно так же как переход от льда к воде приводит к росту симметрии, переход от воды к пару приводит к тому же. Большинство (но не все[2]) из веществ ведут себя сходным образом, испытывая повышение симметрии, когда они подвергаются переходу из твердой фазы в жидкую и из жидкой в газообразную.

Ситуация почти такая же, когда вы охлаждаете воду или почти любое другое вещество; все имеет место с точностью до наоборот. Например, когда вы охлаждаете газообразный пар, сначала ничего не происходит, но когда температура падает до 100 градусов Цельсия, внезапно начинается конденсация в жидкую воду; когда вы охлаждаете жидкую воду, ничего не будет происходить, пока вы не достигнете 0 градусов Цельсия, при которых внезапно начинается замерзание в твердый лед. И, следуя тем же рассуждениям относительно симметрии – но наоборот – мы заключаем, что оба из этих фазовых переходов сопровождаются снижением симметрии.*

(*) "Даже если уменьшение симметрии означает, что некоторые преобразования проходят незамеченными, тепло, переданное окружению во время такой трансформации, гарантирует, что полная энтропия, – включая энтропию окружения, – все еще возрастает."

Так много о льде, воде, паре и их симметриях. Как все это должно быть связано с космологией? Ну, в 1970е годы физики обнаружили, что не только объекты во вселенной могут испытывать фазовые переходы, но и космос как целое также может это делать. На протяжении последних 14 миллиардов лет вселенная неуклонно расширялась и становилась более разреженной. И точно так же, как при спускании велосипедной камеры она охлаждается, температура расширяющейся вселенной неуклонно падает. В течение большей части этого уменьшения температуры ничего особого не происходит. Но имеются основания быть уверенным, что когда вселенная переходила через особые критические температуры, – аналоги 100 градусов Цельсия для пара и 0 градусов Цельсия для воды, – она подвергалась радикальному изменению и испытывала резкое уменьшение симметрии. Многие физики уверены, что мы теперь живем в "конденсированной" или "замороженной" фазе вселенной, той, что крайне отличается от более ранних эпох. Космологические фазовые переходы не заключаются буквально в конденсации газа в жидкость или в замерзании жидкости в твердое тело, хотя имеется много качественно сходных свойств с этими более привычными примерами. Скорее, "вещество", которое конденсируется или замерзает, когда вселенная охлаждается до особой температуры, является полем – более точно, Хиггсовым полем. Посмотрим, что это означает.

Сила, материя и Хиггсовы поля

Поля обеспечивают каркас для большей части современной физики. Электромагнитное поле, обсуждавшееся в Главе 3, является, возможно, простейшим и наиболее широко оцененным из природных полей. Проводя жизнь среди радио и телевизионных передач, телефонных коммуникаций, солнечного тепла и света, мы все постоянно купаемся в море электромагнитных полей. Фотоны являются элементарными составляющими электромагнитных полей и могут рассматриваться как микроскопические переносчики электромагнитной силы. Когда вы что-нибудь видите, вы можете думать об этом в терминах волнового электромагнитного поля, входящего в ваш глаз и стимулирущего вашу сетчатку, или в терминах частиц-фотонов, входящих в ваш глаз и делающих то же самое. По этой причине фотон временами описывается как частица-переносчик электромагнитной силы.

Гравитационное поле также привычно, поскольку оно постоянно и единообразно удерживает нас и все остальное вокруг нас на земной поверхности. Как и с электромагнитными полями, мы все погружены в море гравитационных полей; Земля доминирует, но мы также чувствуем гравитационные поля Солнца, Луны и других планет. Точно так же, как фотоны являются частицами, которые составляют электромагнитное поле, физики уверены, что частицами, которые составляют гравитационное поле, являются гравитоны. Гравитоны все еще не открыты экспериментально, но это не удивительно. Гравитация является слабейшей из всех сил (например, обычный магнит, который вешается на холодильник, может поднять скрепку для бумаги, тем самым преодолев притяжение всей земной гравитации), так что вполне понятно, что экспериментаторы еще не уловили мельчайшие составляющие слабейшей силы. Однако, даже без экспериментального подтверждения большинство физиков уверено, что точно так же, как фотоны передают электромагнитную силу (они являются частицами-переносчиками электромагнитных сил), гравитоны передают гравитационную силу (они являются частицами-переносчиками сил тяготения). Когда вы роняете стакан, вы можете думать о происходящем в терминах гравитационного поля Земли, притягивающего стакан, или, используя более изощренное геометрическое описание Эйнштейна, вы можете думать об этом в терминах того, что стакан соскальзывает вдоль углубления в ткани пространства-времени, вызванного присутствием Земли, или, – если гравитоны на самом деле существуют, – вы можете также думать об этом в терминах испускания и поглощения гравитонов между Землей и стаканом, передающего гравитационное "сообщение", которое "приказывает" стакану падать к Земле.

Вне этих хорошо известных силовых полей имеются две другие силы природы, сильное ядерное взаимодействие и слабое ядерное взаимодействие, и они также оказывают свое влияние через поля. Ядерные силы менее привычны, чем электромагнетизм и гравитация, поскольку они действуют только на атомных и субатомных масштабах. Но даже при этом их влияние на повседневную жизнь через ядерные реакции, заставляющие Солнце светить, ядерные реакции при работе атомных реакторов, а также радиоактивный распад элементов вроде урана и плутония не менее важно. Поля сильного и слабого ядерного взаимодействия называются полями Янга-Миллса в честь Ч.Н. Янга и Роберта Миллса, которые разработали в 1950-е их теоретические обоснования. И точно так же, как электромагнитные поля составлены из фотонов, а поля тяготения, как мы верим, должны быть составлены из гравитонов, сильные и слабые поля также имеют частицы в качестве составляющих. Частицы сильного взаимодействия называются глюонами, а частицы слабого взаимодействия называются W- и Z-частицами. Существование этих частиц взаимодействия было подтверждено экспериментами на ускорителях, проведенными в Германии и Швейцарии в конце 1970х и начале 1980х.

Полевая основа также применима и к материи. Грубо говоря, вероятностные волны квантовой механики сами могут мыслиться как заполняющие пространство поля, которые обеспечивают вероятность, что та или иная частица материи находится в том или ином месте. Например, электрон может рассматриваться как частица, – одна из тех, что могут оставить точку на фосфорецирующем экране, как на Рис. 4.4, – но он может (и должен) также рассматриваться в терминах волнового поля, одного из тех, которые дают вклад в интерференционную картину на фосфоресцирующем экране, как на Рис. 4.3b.[3] Фактически, хотя я не хочу здесь вдаваться в большие детали,[4] вероятностная волна электрона тесно связана с некоторым электронным полем – полем, которое во многих смыслах сходно с электромагнитным полем, но в котором электрон играет роль, аналогичную фотонам, будучи мельчайшей составляющей электронного поля. Такой же вид полевого описания сохраняет справедливость также и для всех других видов частиц материи.

Перейти на страницу:

Брайан Грин читать все книги автора по порядку

Брайан Грин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Брайан Грин. Ткань космоса: Пространство, время и структура реальности отзывы

Отзывы читателей о книге Брайан Грин. Ткань космоса: Пространство, время и структура реальности, автор: Брайан Грин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*