Дэйв Голдберг - ВСЕЛЕННАЯ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ
Итак:
1. Альберт Эйнштейн (1879-1955), Нобелевская премия за 1921 год.Нужны ли здесь какие-либо аргументы? Эйнштейн создал теорию относительности — и специальную (эта глава), и общую (главы 5 и 6),— причем, судя по всему, на абсолютно пустом месте и совершенно самостоятельно. Он неопровержимо доказал, что свет состоит из частиц (глава 2), и стал одним из отцов-основателей квантовой механики, хотя сам в нее толком не верил. Его имя стало синонимом олова «гений», к тому же, положа руку на сердце, он единственный из нашего списка, кого вы знаете в лицо.
2. Ричард Фейнман (1918-1988), Нобелевская премия за 1965 год.Благодаря уникальному складу ума Фейнман стал героем и примером практически для каждого молодого физика. Он изобрел квантовую электродинамику, которая при помощи квантовой механики объясняла, как устроено электричество (глава 4), и доказал, что частицы и поля буквально двигаются по всем возможным путям одновременно (глава 2). Кроме того, он прославился как «великий популяризатор», и по крайней мере несколько примеров из нашей книги беспардонно (но со ссылками) свистнуты из лекций Фейнмана.
3. Нильс Бор (1885-1962), Нобелевская премия за 1922 год.Довольно скоро вы прочитаете главу 2, которая будет посвящена квантовой механике. Вы ее обязательно полюбите! Даже если нет, ближе к середине главы мы расскажем, что стандартные представ- / ления о квантовой механике на настоящий момент называются «копенгагенской интерпретацией». Догадайтесь с трех раз, откуда Бор родом. Бор не только в общих чертах определил мировоззрение современного человека, но и первым создал реалистичную картину атома и показал, что как попало атом не сляпаешь — его состояния «квантуются».
4. Поль Адриен Морис Дирак (1902-1984), Нобелевская премия за 1933 год.Дирак был среди тех, кто продрался сквозь целую гору уравнений, получил формулу, которая на вид казалась физически абсурдной, но решил, что «Бог, создавая этот мир, опирался на математические выкладки восхитительной красоты», и решил, что раз так, все эти уравнения все равно верны. Примерно так он и предсказал существование антиматерии за четыре года до того, как ее обнаружили.
5. Вернер Гейзенберг (1901-1984), Нобелевская премия за 1933 год.Когда Гейзенбергу присудили Нобелевскую премию, формулировка была такой: «За создание квантовой механики, применение которой, среди прочего, привело к открытию аллотропных форм водорода». Хотя на самом деле Гейзенберг не создал квантовую механику, он внес колоссальный вклад в ее разработку и открыл «принцип неопределенности Гейзенберга». Об этом подробнее в главе 2.
Если вы хоть в чем-то похожи на нас, то ваше презрение к авторитетам сравнимо разве что с вашим же вкусом к жизни. Вы не подчиняетесь ничьим приказам и уж конечно ничего не принимаете на веру. Мы так хорошо вас понимаем — ведь мы тоже бунтари-одиночки. Вот почему мы не отвечаем на ваши вопросы об устройстве Вселенной сакраментальным «потому что мы так сказали». Напротив, мы из кожи вон лезем, взывая к вашему здравому смыслу и повседневному опыту, чтобы они подтолкнули вас в нужном направлении.
С квантовой механикой это не получается. На здравом смысле тут далеко не уедешь, хотя вам, возможно, и покажется, будто вы летите с ветерком. Вас, словно Гензеля и Гретель, привлекут яркие цвета и простые ответы, которые вы получите, если изберете легкий путь. Считайте наши подсказки хлебными крошками, которые готовы повести вас по тайным лабиринтам квантовых странностей. Опустим ту часть, согласно которой нас склевали прожорливые птички.
«А что такого странного в квантовой механике?" — спрашиваете вы с беспечной улыбочкой. Да, мы понимаем, вы стреляный воробей, в жизни у вас уже было буквально все и вас уже ничем не обескуражить. А значит, вы не будете возражать, если мы попросим вас пройти один незамысловатый популярный тест[15].
Старинный тест на классическую интуициюПожалуйста, постарайтесь отвечать честно. Если вы человек настолько искушенный, что ввязались в эту историю, уже зная кое-что о квантовой механике, нечестно притворяться, будто ваша интуиция щелкает парадоксы, как орешки.
Вопросы:
1. Сочувствуете ли вы метаниям Роберта Фроста в стихотворении «Другая дорога»?
В осеннем лесу, на развилке дорог,
Стояли, задумавшись, у поворота;
Пути было два, и мир был широк,
Однако я раздвоиться не мог,
И надо было решаться на что-то.
(Пер. Г. Кружкова)
2. Подумайте над дилеммой Гамлета: «Быть или не быть?». Так л и уж необходимо делать подобный вы - бор?
3. Если дерево падает в лесу, где никого нет, производит ли оно грохот?
Ответы:
Если вы ответили «да» на все три вопроса, поздравляем! По складу ума вы прекрасно приспособлены к жизни в классическом мире. Если же вы ответили «нет» хотя бы на один из них, то не прошли тест на классическую интуицию, зато, скорее всего, готовы вступить в квантовый мир.
Если вы прошли тест на классическую интуицию, то оказались в отличной компании. Сэр Исаак Ньютон (и его классические последователи) помог нам выстроить поезда, автомобили, даже космические корабли,— и все это основываясь на сильной
классической интуиции. И если судьба не распорядилась так, что именно вы конструируете микросхемы, можно ручаться, что практически все ваши повседневные действия соответствуют классической физике.
Но многое в природе скрыто от непосвященных, и, если приглядеться, окажется, что физическим миром на самом деле правит микроскопическое царство квантовой механики. Слово «квантовый» относится к следующему явлению: энергия электронов и прочих частиц не может иметь произвольное значение. Вот, например, лампочки бывают мощностью только 40, 60 и 100 ватт, а не, скажем, 93 ватта,—так и энергии микромира способны (ну, или должны) принимать только «квантованные» значения. Другая сторона понятия «квантовый» заключается в том, что иногда мы будем говорить о том, что все пространство заполнено чем-нибудь вроде, скажем, электрического поля. Но если взглянуть на ситуацию поподробнее, мы обнаружим, что поле можно разбить на отдельные частицы.
А при чем тут «механика»? Так, заполнить пустое место.
Чтобы проиллюстрировать наши слова примерами, мы проведем некоторое время с двумя личностями, которые воплощают суть квантовых странностей: с доктором Джекилом и мистером Хайдом. Доктор Джекил — человек добрый, мягкосердечный и очаровательно предсказуемый, мистер Хайд — сущий дьявол и заслуживает презрения, с каким относятся разве что к серийным убийцам и любителям караоке.
Разумеется, вы должны знать, что доктор Джекил и мистер Хайд взаимоисключающи. Мистер Хайд — это мерзкое уродливое существо, которое живет внутри доктора Джекила и выскакивает на поверхность, чтобы сеять смерть и разрушение[16]. Неважно, почему это происходит — по воле случая, под настроение, в некий роковой предназначенный час,— так или иначе, Джекил превращается из благовоспитанного доктора в разъяренного социопата мгновенно.
Так вот» присоединимся к доктору Джекил у, который гуляет по свежевыпавшему снегу. Наслаждаясь морозным декабрьским воздухом, Джекил подходит к белому штакетному забору, где не хватает одной дощечки. Доктор Джекил не чужд невинным забавам и любит простые радости, поэтому он отходит на несколько футов и начинает бросать снежки. Многие снежки попадают в забор (ведь доктор Джекил прежде всего ученый» и меткость никогда не была его сильным местом), но некоторым все-таки удается пролететь в щель в заборе и разбиться о домик, который стоит в отдалении. Как нетрудно догадаться, при этом получается простой узор. На стене дома образуется неряшливая, однако четко различимая вертикальная линия.
Доктору Джекилу становится скучно бросать снежки в такую простую мишень, и он бродит по окрестностям, пока не находит забор, где не хватает двух штакетин, так что в нем две щели. Тогда доктор снова начинает бросать снежки один за другим и — бух! Шлеп! — одни пролетают в левую щель, другие — в правую, третьи попадают в забор. Глядя в щели на стены дома, доктор видит две четкие линии из снега и льда. Можно с большой долей уверенности сказать, что комья снега слева прилетели из левой щели и наоборот.
Эксперимент с двойной щелью доктора Джекила основан на схеме, предложенной английским физиком Томасом Юнгом, и в данном случае ясно иллюстрирует поведение частиц. Делаем в заборе одну щель — получаем одну снежную линию, вводим вторую щель — получаем вторую линию. Тот же эксперимент можно проделать с камнями или тортиками и получить совершенно такой же результат. Главное — результаты экспериментов доктора Дже-