Kniga-Online.club
» » » » Ричард Фейнман - 5. Электричество и магнетизм

Ричард Фейнман - 5. Электричество и магнетизм

Читать бесплатно Ричард Фейнман - 5. Электричество и магнетизм. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Может быть, эти три производные и представляют собой ком­поненты вектора:

(2.11)

Ясно, конечно, что, вообще говоря, не из любых трех чисел можно составить вектор. О векторе можно говорить только тогда, когда при повороте системы координат компоненты пре­образуются по правильному закону. Так что следует просле­дить, как меняются эти производные при повороте системы координат. Мы покажем, что (2.11) — действительно вектор. Производные действительно преобразуются при вращении си­стемы координат так, как полагается.

В этом можно убедиться по-разному. Можно, например, задать себе вопрос, ответ на который не должен зависеть от системы координат, и попытаться выразить ответ в «инвариант­ной» форме. К примеру, если S=A·B и если А и В — векторы, то мы знаем (это доказано в вып. 1, гл. 11), что S — скаляр. Мы знаем, что S — скаляр, не проверяя, меняется ли он при изменении системы координат. Ему ничего иного не остается, раз он является скалярным произведением двух векторов. По­добным же образом, если мы знаем, что А — вектор, и у нас есть три числа B1, B2, В3, и мы обнаруживаем, что

(2.12)

(где S в любой системе координат одно и то же), то три числа b1, B2, В3 обязаны быть компонентами Вх, Ву, Вz некоторого вектора В.

Рассмотрим теперь температурное поле. Возьмем две точки P1 и Р2, разделенные маленьким расстоянием DR. Температура в Р1 есть T1, а в Р2 она равна T2 , и их разница DТ=Т2-Т1 .Температура в этих реальных физических точках, конечно, не зависит от того, какие оси мы выбрали для измерения коорди­нат. В частности, DT — тоже число, не зависящее от системы координат. Это скаляр.

Выбрав удобную систему координат, мы можем написать

Т1 = Т(х, у, z) и Т2=Т(х + Dx, у + Dу, z + Dz),

где Dx:, Dy, Dz — компоненты вектора DR (фиг. 2.5). Вспомнив (2.7), напишем

(2.13)

Слева в (2.13) стоит скаляр, а справа — сумма трех произведе­ний каких-то чисел на Dx;, Dy, Dz, которые являются компонен­тами вектора. Значит,

три числа — тоже х-, у- и z-компоненты вектора.

Фиг. 2.5. Вектор DR с компо­нентами Dx, Dу, Dz.

Мы напишем этот новый вектор при помощи символа СТ. Символ С (называемый набла) — это D вверх ногами; он напоминает нам о дифференцировании. Читают С T по-разному:

«набла T», или «градиент T», или «gradT»:

(2.14)

С этим обозначением (2.13) переписывается в более компакт­ной форме

(2.15)

Или, выражая словами: разница температур в двух близких точках есть скалярное произведение градиента Т на вектор смещения второй точки относительно первой. Форма (2.15) так­же служит иллюстрацией к нашему утверждению, что ДТ — действительно вектор.

Быть может, вы еще не убеждены? Тогда докажем иначе. (Хотя, вглядевшись внимательно, вы увидите, что это на самом деле то же самое доказательство, только подлиннее!) Мы по­кажем, что компоненты ДТ преобразуются абсолютно так же, как я компоненты R, а значит, ДТ — тоже вектор в соответствии с первоначальным определением вектора в вып. 1, гл. 11. Мы выберем новую систему координат х', у', z' и в ней вычис­лим дТ/дх', дТ/ду': дТ/dz'. Для простоты положим z=z', так что о третьей координате мы можем позабыть. (Можете сами заняться проверкой более общего случая.)

Фиг. 2.6. Переход к повернутой системе координат (а) и частный

случай интервала DR, параллель­ного к оси х (б).

Выберем систему х', у', повернутую относительно х, y-системы на угол 9 (фиг. 2.6, а). Координаты точки (х, у) в штрихованной системе имеют вид:

(2.16)

(2.17)

или, решая относительно x и y,

(2.18)

(2.19)

Если всякая пара чисел преобразуется так же, как x и y, то она является компонентами вектора.

Рассмотрим теперь разницу в температурах двух сосед­них точек Р1и Р2(фиг. 2.6, б). В координатах х, у запишем

(2.20)

так как Dy = 0.

А в штрихованной системе? Там мы бы написали

(2.21)

Глядя на фиг. 2.6, б, мы видим, что

(2.22)

и

(2.23)

так как Dy отрицательно при положительном Dx. Подстав­ляя в (2.21), получаем

(2.24)

(2.25)

Сравнивая (2.25) с (2.20), мы видим, что

(2.26)

Это уравнение говорит нам, что дТ/дх получается из дТ/дх' и дТ/ду' в точности так же, как х из х' и у' в (2.18). Значит, дТ/дх — это x-компонента вектора. Сходные же рассуждения показывают, что дТ/ду и dT/dz суть у- и z-компоненты. Стало быть, СТ есть на самом деле вектор. Это векторное поле, обра­зованное из скалярного поля Т.

§ 4. Оператор С

А сейчас мы проделаем крайне занятную и остроумную вещь — одну из тех, которые так украшают математику. До­казательство того, что grad Т, или СT является вектором, не зависит от того, какое скалярное поле мы дифференцируем. Все доводы остались бы в силе, если бы Т было заменено любым скалярным полем. А поскольку уравнения преобразований одинаковы независимо от того, что дифференцируется, то можно Т убрать и уравнение (2.26) заменить операторным уравнением

(2.27)

Как выразился Джинс, мы оставляем операторы «жаждущими продифференцировать что угодно».

Так как сами дифференциальные операторы преобразуются как компоненты векторного поля, то можно назвать их компо­нентами векторного оператора. Можно написать

(2.28)

это означает, конечно,

(2.29)

Мы абстрагировали градиент от Т — в этом и есть остроумие. Конечно, вы должны все время помнить, что С — это опе­ратор. Сам по себе он ничего не означает. А если С сам по себе ничего не означает, то что выйдет, если мы градиент помножим на скаляр, например на T, чтобы получилось произведе­ние TС? (Ведь вектор всегда можно умножить на скаляр.) Это опять ничего не означает. Компонента х этого выражения равна

(2.30)

а это не число, а все еще какой-то оператор. Однако в согласии с алгеброй векторов ТСпо-прежнему можно называть векто­ром.

А сейчас помножим С на скаляр с другой стороны. Полу­чится произведение СT. В обычной алгебре

(2.31)

но нужно помнить, что операторная алгебра немного отличается от обычной векторной. Надо всегда выдерживать правильный порядок операторов, чтобы их операции имели смысл. Тогда у вас трудностей не возникнет, если вы припомните, что опе­ратор y подчиняется тем же условиям, что и производные. То, что вы дифференцируете, должно быть поставлено справа от С Порядок здесь существен.

Если помнить о порядке, то сразу ясно, что ТС это опе­ратор, а произведение СТ — это уже не «жаждущий» опера­тор, его жажда утолена. Это физическая величина, имеющая смысл. Он представляет собой скорость пространственного из­менения Т: x-компонента СТ показывает, насколько быстро Т изменяется в

x-направлении. А куда направлен вектор СТ? Мы знаем, что скорость изменения Т в каком-то направлении — это компонента СТ в этом направлении [см. (2.15)]. Отсюда следует, что направление СТ — это то, по которому СТ обла­дает самой длинной проекцией; иными словами, то, по которому СТ меняется быстрее всего. Направление градиента Т — это направление быстрейшего подъема величины Т.

§ 5. Операции с С

Можно ли с векторным оператором С производить другие алгебраические действия? Попробуем скомбинировать его с век­тором. Из двух векторов можно составить скалярное произве­дение, причем двоякого рода:

(Вектор)·С или С· (Вектор).

Первое выражение пока что ничего не означает — это все еще оператор. Окончательный смысл его зависит от того, на что он Судет действовать. А второе произведение — это некое скаляр­ное поле (потому что А·В — всегда скаляр).

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


5. Электричество и магнетизм отзывы

Отзывы читателей о книге 5. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*