Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
где R — радиус зоны ионизации, которую мы предполагаем сферической, NeNi — число рекомбинаций в единице объема за секунду, Ne = Ni — концентрации электронов и ионов, — коэффициент рекомбинации, L(T) — мощность ультрафиолетового излучения звезды, зависящая от температуры ее поверхности, h — средняя энергия ультрафиолетовых квантов. Из формулы (2.2) следует, что
(2.3)Расчеты показывают, что при Ne 1 см-3 (величина, недалекая от действительности; см. ниже) для звезд спектральных классов О и В величина R может достигнуть многих десятков парсек. Внутри этой огромной области находятся десятки тысяч звезд. Интересно, что переход между зонами H II и Н I очень резок: на протяжении каких-нибудь сотых долей парсека межзвездный водород из состояния почти 100%-ной ионизации переходит в нейтральное состояние.
Все поглощенное ультрафиолетовое излучение центральной горячей звезды зона H II «перерабатывает» в «видимые» и «инфракрасные» кванты бальмеровской и пашеновской серий водорода и в запрещенные линии, а также в ультрафиолетовые кванты линии «лайман-альфа». Поэтому для наблюдателя такая зона должна представлять собой неправильной формы протяженный объект, более или менее сильно излучающий в отдельных спектральных линиях. Но это есть не что иное, как газовые туманности, наиболее яркие из которых (например, в созвездии Ориона) уже очень давно известны астрономам. Излучение единицы объема такой туманности обусловлено различного рода столкновениями между электронами и ионами, приводящими к появлению атомов и ионов в возбужденных состояниях. Поэтому указанное излучение должно быть пропорционально квадрату плотности Ne2. Основной характеристикой, определяющей условия наблюдения туманностей, является их поверхностная яркость, которая пропорциональна произведению излучения единицы объема на протяженность излучающей области по лучу зрения R. Следовательно, поверхностная яркость туманности I пропорциональна величине Ne2R, называемой «мерой эмиссии».
На рис. 2.3—2.5 приведены несколько фотографий областей Н II— газовых туманностей. Эти фотографии получены через фильтр, пропускающий красную водородную линию H. Хорошо видно сложное распределение яркости у этих объектов. Следует, однако, иметь в виду, что «клочковатая» структура поглощающих свет пылевых облаков (проектирующихся на туманности либо находящихся в них) сильно искажает действительную картину распределения яркости.
Рис. 2.3: Фотография туманности Ориона.Рис. 2.4: Фотография туманности W 3.Зная из астрономических наблюдений поверхностную яркость туманности, всегда можно получить соответствующую ей меру эмиссии. Если при этом известна ее протяженность по лучу зрения R, то сразу же определяется величина Ne, т.е. плотность межзвездного газа. Следует, однако, подчеркнуть, что по причине весьма неоднородного распределения межзвездного газа таким образом определенная плотность имеет смысл некоторого среднего значения. Оказывается, что в облаках межзвездного газа средняя плотность — около 10 ионизованных атомов водорода на кубический сантиметр. Отдельные, очень плотные облака имеют концентрацию атомов порядка нескольких тысяч на кубический сантиметр и больше. Такие плотные облака наблюдаются как очень яркие туманности. Концентрация атомов в межзвездном пространстве между облаками по крайней мере в сотню раз меньше, чем в облаках. Концентрации атомов в облаках межзвездного газа, где водород не ионизован (зоны Н I), с большой надежностью находятся из анализа ультрафиолетовых линий поглощений этого газа в спектрах звезд, получаемых на орбитальных астрономических обсерваториях. В частности, по спектрограммам, полученным на спутнике «Коперник», можно сделать количественный химический анализ межзвездной среды. Для исследовавшихся таким образом облаков, проектирующихся на сравнительно близкие к нам звезды, концентрация водорода оказалась порядка нескольких сотен на кубический сантиметр.
Рис. 2.5: Фотография туманностей «Северная Америка» и «Пеликан».Тщательный анализ спектров, полученный на «Копернике» от сравнительно близких (находящихся от нас на расстоянии от 20 до 150 пс) звезд, лишенных какого бы то ни было покраснения, обусловленного космической пылью, позволил исследовать физические свойства весьма разреженной межзвездной среды, находящейся между облаками. В этом случае интенсивность межзвездных линий поглощения очень мала. В основном наблюдались резонансные линии однократно ионизованных атомов. Создается впечатление, что тяжелых элементов в межоблачной среде относительно меньше, чем в облаках. Концентрация водорода в межоблачной среде меняется в довольно широких пределах от 0,2 до 0,02 см-3.
Межзвездный газ в Галактике концентрируется в очень тонком слое около ее плоскости симметрии. Толщина этого слоя не превышает 200 пс, а средняя концентрация частиц в нем около 1 см-3. Такой средней концентрации атомов соответствует средняя плотность около 10-24 г/см3. Заметим, что средняя плотность межзвездной пыли приблизительно в сто раз меньше. Любопытно отметить, что плотность тяжелых элементов в межзвездном газе (т.е. всех элементов, исключая водород и гелий) около 10-26 г/см3. Так как межзвездные пылинки состоят преимущественно из тяжелых элементов, это означает, что примерно половина всех тяжелых элементов в межзвездной среде «связана» в твердых частицах, между тем как вторая половина находится в газообразном состоянии. Это удивительное обстоятельство, которое пока ещё не нашло объяснения, должно иметь большое значение для понимания происхождения межзвездной пыли.
Итак, концентрация атомов межзвездного газа по крайней мере в миллиард миллиардов раз меньше, чем в земной атмосфере. Тем более парадоксальным является утверждение, что межзвездный газ отнюдь не является вакуумом! В самом деле, что такое вакуум? Оказывается, далеко не всякий, даже очень разреженный газ можно считать вакуумом. Только тогда, когда длина свободного пробега частиц газа больше, чем размеры объема, в котором этот газ находится, можно говорить о вакууме. Например, в газоразрядной трубке концентрация атомов газа может быть 1012 см-3. Тогда длина свободного пробега l 1/n, где 10-15 см2 — поперечное сечение атомов при столкновениях. Если длина трубки меньше метра, можно говорить о вакууме. В межзвездном пространстве при n 1 см-3 l 1015 см, т. е. 3 10-4 пс, между тем как толщина газового диска в Галактике около 200 пс. При таких условиях ни о каком вакууме не может быть речи. Межзвездный газ — это непрерывная, сжимаемая среда, континуум. К нему полностью применимы законы газовой динамики. По этой непрерывной среде распространяются волны, например, ударные. В частности, об одном важном типе ударных волн в межзвездной среде, вызванном взрывом звезд, речь будет идти в § 16. Эта среда охвачена сложным, турбулентным движением, по ней обычно проходит мелкая «рябь», о которой разговор будет идти в § 21. Следует еще иметь в виду, что эта непрерывная среда обладает довольно высокой электропроводностью, так как она либо полностью (в зонах Н II), либо частично (в зонах Н I) ионизована. Из-за высокой проводимости межзвездной среды наличие в ней межзвездных магнитных полей приводит к очень интересным эффектам. Магнитные силовые линии как бы «приклеены» к межзвездному газу и следуют за причудливыми движениями его облаков. Часто межзвездное магнитное поле, если оно достаточно сильно, как бы «контролирует» движения облаков, запрещая им двигаться поперек силовых линий. Очень важная ветвь современной физики, имеющая большое прикладное значение — магнитная гидродинамика — родилась в астрономии, в частности, при исследовании природы межзвездного газа.
Если до войны астрономы ограничивались только изучением специфических процессов взаимодействия межзвездного газа и поля «разжиженного» излучения, то в послевоенный период все большее значение приобретает магнитно-гидродинамический аспект этой проблемы. Особенно большое значение этот аспект имеет для центральной проблемы, которая нас интересует — образования звезд из межзвездной среды путем конденсации последней. Этой проблеме будет посвящен следующий параграф.