Джим Бэгготт - Бозон Хиггса. От научной идеи до открытия «частицы Бога»
Однако они встретили упорное сопротивление.
«Что будут думать наши солдаты, когда вернутся в университет и увидят, что им придется слушать поучения женщины?» – спрашивали университетские консерваторы.
«Не понимаю, как пол кандидата может быть доводом против ее принятия в качестве приват-доцента[10], – возразил Гильберт. – В конце концов, мы в университете, а не в бане»[11].
Гильберт настоял на своем, и в апреле 1915 года Нетер переехала в Геттинген.
Вскоре после приезда Нетер сформулировала теорему, которая впоследствии стала одной из самых знаменитых в физике.
Нетер пришла к выводу, что принципы сохранения физических количеств, таких как энергия и импульс, можно проследить до законов, описывающих их в отношении к действию некоторых непрерывных преобразований симметрии. Законы сохранения – это проявления глубинной симметрии природы.
Обычно мы представляем себе симметрию как зеркальное отражение: схожесть между левой и правой стороной, верхней и нижней, передней и задней. Мы называем что-то симметричным, если оно выглядит точно так же по другую сторону от некоего центра, или оси симметрии. В данном случае преобразование симметрии – это акт отражения объекта как бы в зеркале. Если объект неизменен (инвариантен) после такого действия, мы говорим, что он симметричен.
Рис. 5
Обычно мы представляем себе симметрию как зеркальное отражение и называем что-то симметричным, если оно выглядит одинаковым по обе стороны от некоего центра, или оси симметрии. Элизабет Херли наглядно показывает связь между симметрией лица и классическим представлением о красоте. Источник: © Peter Steffen/dpa/Corbis
Например, симметрия лица, по-видимому, очень глубоко вплетена в наше восприятие красоты и привлекательности человека и на подсознательном уровне служит индикатором хорошей генетики. У тех, кто считается красивым, чаще бывает более симметричное лицо, а люди, вообще говоря, склонны спариваться с теми, кого считают красивыми (см. рис. 5)[12].
Такие примеры преобразования симметрии называются дискретными. Для них требуется мгновенно «переключиться» с одной стороны на другую, с левой на правую. В теореме Нетер рассмотрены самые разные виды преобразования симметрии. Они включают длительные, постепенные изменения, например непрерывное вращение по кругу. Совершенно очевидно, что, если повернуть круг на бесконечно малый угол, измеренный из центра, он будет выглядеть неизменившимся. Круг симметричен относительно непрерывного вращения. Квадрат в этом же смысле не симметричен. Однако он вполне симметричен относительно дискретного вращения на 90° (рис. 6).
Рис. 6
Непрерывное преобразование симметрии означает небольшое постепенное изменение непрерывной переменной, например расстояния или угла. (a) Когда мы поворачиваем круг на небольшой угол (δ), он представляется неизменным (инвариантным), и мы говорим, что он симметричен относительно подобных преобразований.
(b) Квадрат, напротив, несимметричен в этом смысле. Квадрат симметричен относительно дискретного вращения на 90°
Теорема Нетер соединяет каждый закон сохранения с непрерывным преобразованием симметрии. Она обнаружила, что управляющие энергией законы инвариантны относительно непрерывных изменений, или трансляций во времени. Иными словами, математические отношения, описывающие динамику энергии в физической системе в какой-то момент времени t, будут точно такими же и через бесконечно малый промежуток времени.
Значит, эти законы не меняются со временем, а это есть именно то, что требуется отношениям между физическими свойствами, которые мы хотим поднять на уровень фундаментальных законов. Эти законы одинаковы для вчерашнего, сегодняшнего и завтрашнего дня, что в высшей степени обнадеживает. Если описывающие энергию законы не меняются со временем, тогда энергия должна сохраняться.
Применительно к импульсу Нетер показала, что законы инвариантны к непрерывным трансляциям пространства. Законы, управляющие сохранением импульса, не зависят от положения в пространстве. Они одинаковы здесь, там и везде. Для момента импульса законы инвариантны относительно преобразований вращения, как в вышеописанном примере с кругом. Они одинаковы безотносительно угла направления, измеренного от центра вращения.
Работая над теоремой, Нетер рассуждала примерно так. В физике есть определенные количества, которые, как следует из внимательных наблюдений и экспериментов, сохраняются. Сильно постаравшись, физики вывели законы, управляющие этими количествами. Как оказалось, законы инвариантны определенным непрерывным преобразованиям симметрии. Такая инвариантность означает, что эти количества должны сохраняться.
Эти рассуждения можно перевернуть и наоборот. Предположим, есть физическое количество, которое, как нам кажется, сохраняется, но для которого еще не объяснены законы, управляющие его поведением. Если физическое количество действительно сохраняется, то законы – каковы бы они ни были – должны быть инвариантны некоему непрерывному преобразованию симметрии. Если получится открыть, что это за симметрия, мы уже будем на полпути к открытию законов.
Перевернув рассуждения Нетер, мы избавляемся от необходимости долго гадать и тыкать пальцем в небо. Физики получили подход к формулированию законов, который позволял исключить целые виды возможных математических структур. Тот, кто найдет симметрию, связанную с неким физическим количеством, найдет короткий путь к ответу.
Одно такое физическое количество, которое, казалось, строго сохранялось, но не описывалось еще соответствующим законом сохранения, действительно существовало. Это был электрический заряд.
О феномене статического электричества знали еще философы Древней Греции. Они обнаружили, что можно генерировать электрический заряд и даже искры, если потереть о мех некоторые вещества, например янтарь. У научного исследования электричества долгая и блестящая история, в которой участвовали многие герои. Но только английский физик Майкл Фарадей, работавший в лондонском Королевском институте, соединил множество наблюдений в одно ясное представление о природе электрического заряда. Результаты многочисленных экспериментов неизбежно приводили к выводу, что электрический заряд нельзя ни создать, ни уничтожить ни в одном физическом или химическом преобразовании. Заряд всегда сохраняется.
Уже было открыто множество законов и правил, управляющих электрическим зарядом и его еще непонятной связью с магнетизмом, – это законы Кулона, Гаусса, Ампера, Био – Савара – Лапласа, Фарадея и так далее. В начале 1860-х шотландский физик Джеймс Клерк Максвелл сделал для теории электромагнетизма то, что Ньютон сделал для теории движения планет. Он осуществил смелый теоретический синтез, подобно тому как Фарадей синтезировал данные экспериментов. Красивые уравнения Максвелла в тесном объятии связали электрическое и магнитное поля, создаваемые движущимся электрическим зарядом[13].
Уравнения также продемонстрировали, что все электромагнитное излучение, включая свет, можно описать в виде движения волны со скоростью, которая рассчитывается из известных физических постоянных. Это электрическая постоянная, физическая величина, определяющая способность вакуума передавать или «разрешать» электрическое поле, генерируемое электрическим зарядом, и магнитная постоянная, определяющая проницаемость вакуума для магнитного поля, окружающего движущийся электрический заряд. Когда Максвелл соединил эти постоянные в соответствии со своей новой теорией электромагнитного поля, он получил, что скорость «электромагнитных волн» равна скорости света.
Однако уравнения Максвелла имеют дело с полями, которые генерирует электрический заряд, а не с самим зарядом. Они тесно связаны, но уравнения в принципе не позволяют понять причины сохранения заряда. В свете теоремы Нетер поиск законов, управляющих электрическим зарядом, стал поиском глубинного непрерывного преобразования симметрии, относительно которой законы инвариантны.
Поиск продолжил немецкий математик Герман Вейль.
Вейль родился в 1885 году в Эльмсхорне, городке недалеко от Гамбурга, и получил докторскую степень под руководством Гильберта в Геттингене в 1908 году. Затем он получил должность профессора в Швейцарской высшей технической школе Цюриха, где познакомился с Альбертом Эйнштейном и где его увлекли вопросы математической физики.
Работая над общей теорией относительности в 1915 году, Эйнштейн отказался от всякого понятия абсолютного пространства и времени. Он утверждал, что физика, напротив, должна быть основана исключительно на расстояниях между точками и искривлении пространства-времени в каждой точке. Этот эйнштейновский принцип общей ковариантности и вытекающая из него теория гравитации инварианты произвольным изменениям системы координат. Иными словами, хотя существуют физические законы природы, во Вселенной не существует «природной» системы координат. Мы сами изобретаем системы координат, которые помогают описывать физические явления, но законы не должны зависеть (и не зависят) от этого произвольного выбора.