Kniga-Online.club
» » » » Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики

Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики

Читать бесплатно Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Этот одномерный случай рассматривать легко, потому что мы знаем, что изменение кинетической энергии равно интегралу от начала движения до конца от силы –GMm/r2 по перемещению dr

В формуле нет никакого косинуса, потому что сила и перемещение направлены одинаково. Интегрировать dr/r2 легко; получается (–1/г), так что

Перед нами другая формула для потенциальной энергии. Уравнение (13.12) говорит нам, что величина 1/2mv2–GMm/r, вычисленная в точке 1, в точке 2 или в любой другой, остается постоянной.

У нас теперь есть формула для потенциальной энергии в поле тяготения для вертикального движения. Здесь возникает интересный вопрос: можно ли добиться вечного движения в поле тяготения? Поле–то меняется, в разных местах у него разная напряженность и разное направление. Нельзя ли взять бесконечную ленту без трения и запустить ее, скажем, так: пусть она сперва поднимает тело из одной точки в другую, потом проводит его по дуге окружности в третью точку, опускает на некоторый уровень, сдвигает по наклонному направлению и выводит на новый путь и т. п., так что по возвращении в начальную точку оказывается, что поле тяготения совершило некоторую работу и кинетическая энергия тела возросла? Нельзя ли так начертить эту траекторию, чтобы, обойдя по ней, тело приобрело чуть–чуть больше скорости, чем имело вначале? Так получится вечное движение. Но ведь оно невозможно, значит, мы обязаны доказать, что такая траектория немыслима.

Фиг. 13.3. Замкнутый путь обхода в поле тяготения.

Мы должны доказать следующее предположение: раз трения нет, тело должно вернуться ни с меньшей, ни с большей скоростью, а как раз с такой, чтобы еще и еще делать круги по этому замкнутому пути. Или, другими словами, вся работа, произведенная в движении по замкнутому пути, должна быть нулем для сил тяжести, потому что если бы она не была нулем, то можно было бы получить энергию за счет такого движения тела. (Если бы работа оказалась меньше нуля, так что скорость в конце обхода уменьшилась бы, то для получения энергии стоило бы только повернуть обратно; силы ведь зависят не от направления движения, а только от положения. Если в одном направлении работа получится с плюсом, то в обратном она будет с минусом; любая ненулевая работа означает создание вечного двигателя.) Так что же, действительно ли работа равна нулю? Попробуем показать, что да. Сперва мы лишь на пальцах поясним, почему это так, а уж потом оформим математически. Положим, мы выдумали траекторию, показанную на фиг. 13.3; масса падает от 1 к 2, поворачивает до 3, обратно поднимается к 4, затем через 5, 6, 7, 8 движется обратно к 1. Все линии идут либо по радиусу, либо по кругу с центром М. Какая работа совершается на таком пути? Между 1 и 2 она равна произведению GMm на разность 1/r в этих точках:

От 2 до З сила в точности направлена поперек движения, и W23=0. От 3 к 4

Но ведь r2=r3, r4=r5, r6 =r7, r8=r1. Поэтому W=0.

Но возникает подозрение, не слишком ли эта кривая проста. А что даст настоящая траектория? Что ж, попробуем настоящую. Сразу же ясно, что ее можно достаточно точно представить как ряд зазубрин (фиг. 13.4) и поэтому… и т. д., что и требовалось доказать.

Фиг. 13.4. «Плавный» путь обхода.

Показан увеличенный отрезок этого пути и близкая к нему траектория, состоящая из радиальных и круговых участков, а также один из зубцов этой траектории.

Но надо еще посмотреть, действительно ли работа обхода вокруг маленького треугольника тоже равна нулю. Увеличим один из треугольников (см. фиг. 13.4). Равны ли работы по пути от а к b и от b к с работе, совершаемой, когда идешь напрямик от а к с? Пусть сила действует в каком–то направлении. Расположим треугольник так, чтобы у его катета bc было как раз такое направление. Предположим также, что сам треугольник так мал, что сила всюду на нем постоянна. Какова работа на отрезке ас? Она равна

(поскольку сила постоянна). Теперь определим работу на двух катетах. На вертикальном катете ab сила перпендикулярна к ds, так что работа равна нулю. На горизонтальном катете bc

Мы убеждаемся таким образом, что работа обхода по бокам маленького треугольника такая же, как и по склону, потому что scos? равно х. Мы уже показали прежде, что работа при движении по зазубринам (как на фиг. 13.3) равна нулю, а теперь видим, что производимая работа одинакова, независимо от того, движемся ли мы по зазубринам или срезаем путь между ними (если только зазубрины малы, но ведь ничто не мешает сделать их такими); поэтому работа обхода по любому замкнутому пути в поле тяготения равна нулю.

Это очень примечательный результат. Благодаря ему нам становятся известны такие подробности о движении планет, о которых мы раньше и не догадывались. Выясняется, что когда планета вертится вокруг Солнца одна, без спутников и в отсутствие каких–либо других сил, то квадрат ее скорости минус некоторая константа, деленная на расстояние до Солнца, вдоль орбиты не меняется. Например, чем ближе планета к Солнцу, тем быстрее она движется. Но насколько быстрее? А вот насколько: если вместо движения вокруг Солнца вы толкнете ее к Солнцу с той же скоростью и подождете, пока она не упадет на нужное расстояние, то приобретенная скорость будет как раз такой, какой планета обладает на этой орбите, потому что получился просто другой пример сложного пути обхода. Если планета вернется по такому пути обратно, ее кинетическая энергия окажется прежней. Поэтому независимо от того, движется ли она по настоящей невозмущенной орбите или же по сложному пути (но без трения), кинетическая энергия в момент возвращения на орбиту оказывается как раз такой, какой нужно.

Значит, когда мы проводим численный анализ движения планеты по орбите (как мы делали раньше), мы можем проверить, не сделали ли заметных ошибок при расчете этой постоянной величины, энергии, на каждом шаге; она не должна меняться. Для орбиты, приведенной в табл. 9.2 (стр. 170), энергия меняется примерно на 1,5% с начала движения до конца. Почему? То ли потому, что в численном методе мы пользовались конечными приращениями, то ли из–за мелких погрешностей в арифметике.

Рассмотрим энергию в другой задаче: задаче о массе, подвешенной на пружине. Когда отклоняют массу от положения равновесия, сила, восстанавливающая ее положение, пропорциональна смещению. Можно ли в этих условиях вывести закон сохранения энергии? Да; потому что работа, совершаемая этой силой, равна

Значит, у массы, подвешенной на пружине, сумма кинетической энергии ее колебаний и

1/2 kx2 постоянна. Посмотрим, как это происходит. Оттянем массу вниз; она неподвижна и скорость ее равна нулю, но х не равно нулю, теперь величина х максимальна, так что имеется и некоторый запас энергии (потенциальной). Отпустим теперь массу: начнется какой–то процесс (в детали мы не вникаем), но в любое мгновение кинетическая плюс потенциальная энергии будут постоянны. Например, когда масса проходит через точку первоначального равновесия, то х=0, но тогда значение v2 наибольшее, и чем больше величина x2, тем меньше v2 и т. д. Значит, во время колебаний соблюдается равновесие между величинами x2 и r2. Мы получили, таким образом, новое правило: потенциальная энергия пружины равна l/2 kx2, если сила равна–kx.

§ 3. Сложение энергий

Перейдем теперь к более общему случаю и рассмотрим, что произойдет, если тел много. Предположим, что имеется несколько тел; пронумеруем их: i = l, 2, 3, … и пусть все они притягивают друг друга. Что тогда произойдет? Можно доказать, что если сложить кинетические энергии всех тел и добавить сюда сумму (по всем парам частиц) их взаимных потенциальных энергий тяготения –GMm/rij, то все вместе даст постоянную:

Как же это доказать? Мы продифференцируем обе стороны по времени и докажем, что получится нуль. При дифференцировании 1/2тiv2i мы получим производные скорости – силы [как в (13.5)], а потом эти силы заменим их величиной, известной нам

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Фейнмановские лекции по физике 1. Современная наука о природе, законы механики отзывы

Отзывы читателей о книге Фейнмановские лекции по физике 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*