Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Вскоре возникла новая странная проблема. Первые квантовомеханические расчеты энергий атомов дали результаты, находившиеся в хорошем согласии с опытом. Но когда квантовую механику начали использовать для описания не только электронов в атомах, но и порождаемых этими электронами электрических и магнитных полей, оказалось, что энергия самого атома равна бесконечности! В других вычислениях появились другие бесконечности, так что в течение четырех десятилетий этот абсурдный результат представлялся главным тормозом на пути прогресса физики. В конце концов проблема бесконечностей оказалась совсем не такой ужасной, более того, она стала одним из главных аргументов, прибавивших оптимизма в отношении возможности построения окончательной теории. Если должным образом позаботиться об определении масс, электрических зарядов и других констант, все бесконечности взаимно уничтожаются, но только в теориях специального вида. Поэтому можно думать, что математика подвела нас к какой-то части окончательной теории, поскольку это единственный способ избежать появления бесконечностей. На самом деле новая загадочная теория струн может быть уже указывает тот единственный путь, который позволяет избежать бесконечностей при объединении теории относительности (включая общую теорию относительности, т.е.4) эйнштейновскую теорию тяготения) с квантовой механикой. Если это так, то нам известна уже значительная часть окончательной теории.
Я совсем не имею в виду, что окончательная теория будет выведена из чистой математики. Помимо всего прочего, почему мы должны верить, что теория относительности, равно как и квантовая механика, логически неизбежны? Мне кажется, что самое большее, на что можно надеяться, это построить окончательную теорию как очень жесткую структуру, которая не может быть превращена в какую-то немного отличающуюся теорию без появления логически абсурдных результатов вроде бесконечных энергий.
Еще один повод для оптимизма связан с тем странным фактом, что прогресс в физике часто основан на суждениях, которые можно охарактеризовать только как эстетические. Это очень удивительно. Каким образом ощущение физика, что одна теория красивее другой, может служить проводником в научном поиске? Этому есть несколько возможных причин, но одна из них относится конкретно к физике элементарных частиц: красота наших сегодняшних теорий может быть «всего лишь грезой» о той красоте, которая ожидает нас в окончательной теории.
В ХХ в. именно Альберт Эйнштейн был наиболее одержим идеей построения окончательной теории. Как пишет его биограф Абрахам Пайс, «Эйнштейн – типичная старозаветная личность, по примеру Иеговы уверенная, что миром правит закон, и его нужно найти»[10]. Последние тридцать лет жизни Эйнштейна были большей частью потрачены на поиски так называемой единой полевой теории, которая должна была объединить теорию электромагнетизма Джеймса Клерка Максвелла с общей теорией относительности, т.е. теорией тяготения Эйнштейна. Попытки Эйнштейна не увенчались успехом, и задним числом мы можем сказать, что они были ошибочны. Дело не только в том, что Эйнштейн пренебрег квантовой механикой; круг рассматриваемых им явлений был слишком узок. Электромагнетизм и гравитация являются единственными фундаментальными силами, проявляющимися в повседневной жизни (и единственными силами, известными в те времена, когда Эйнштейн был молодым человеком), но существуют и другие силы в природе, включая слабые и сильные ядерные силы. Прогресс, достигнутый на пути объединения, заключался на самом деле в том, что максвелловская теория электромагнитных сил объединилась с теорией слабых ядерных сил, а не с теорией тяготения, для которой решить проблему с бесконечностями значительно труднее. Тем не менее битва Эйнштейна стала нашей сегодняшней битвой. Это и есть поиск окончательной теории.
Разговоры об окончательной теории очень раздражают некоторых философов и ученых. Появляются обвинения в чем-то ужасном, вроде редукционизма или, еще хуже, физического империализма. Частично, это реакция на разного рода глупости, которые могут быть связаны с окончательной теорией, например, на утверждение, что открытие такой теории в физике будет означать конец науки. Конечно, с появлением окончательной теории не будут прекращены ни научные исследования вообще, ни чисто научные изыскания, ни даже чисто научные изыскания в физике. Чудесные явления, от турбулентности до феномена сознания, будут нуждаться в объяснении, даже если окончательная теория будет построена. Более того, открытие этой теории в физике совсем не обязательно поможет прогрессу в понимании упомянутых явлений. Окончательная теория будет окончательной лишь в одном смысле – она станет концом определенного типа науки, а именно восходящего к древности поиска таких фундаментальных основ мироздания, которые нельзя объяснить с помощью еще более глубоких принципов.
Глава II. О кусочке мела
Шут: …Любопытна причина, по которой в семизвездье семь звезд, а не больше.
Лир: Потому что их не восемь?
Шут: Совершенно верно. Из тебя вышел бы хороший шут…
В. Шекспир. Король Лир5). Акт 1, сцена 5Ученые сделали множество необычных и прекрасных открытий. Возможно, самым прекрасным и самым необычным из них является открытие структуры самой науки. Наши научные достижения – не разрозненный набор изолированных фактов; одно научное обобщение находит свое объяснение в другом, которое в свою очередь вытекает из следующего. Прослеживая эти стрелки объяснений назад к их источникам, мы обнаруживаем поразительную сходящуюся структуру. Может быть, это и есть глубочайшая из всех истин, постигнутых нами при изучении Вселенной.
Рассмотрим кусочек мела. Это вещество знакомо большинству людей (особенно физикам, которые общаются друг с другом с помощью доски), но я выбрал мел в качестве примера потому, что он явился в свое время объектом полемики, ставшей знаменитой в истории науки. В 1868 г. Ассоциация британских ученых проводила свое ежегодное собрание в большом городе Норвич, главном городе графства на востоке Англии. Для ученых и студентов, собравшихся в Норвиче, это было волнующим событием. В те годы внимание общественности было привлечено к науке не только из-за ее очевидной важности для развития техники, но в еще большей степени из-за того, что наука изменяла взгляды людей на мир и их место в нем. Публикация девятью годами ранее сочинения Дарвина «О происхождении видов путем естественного отбора» резко противопоставила науку доминирующей религии того времени. На собрании присутствовал Томас Генри Хаксли – выдающийся анатом и яростный спорщик, которого современники прозвали «бульдогом Дарвина». Как это часто бывало и ранее, Хаксли воспользовался случаем, чтобы выступить перед гражданами города. Он назвал свою лекцию «О кусочке мела»[11]
Я представляю себе Хаксли стоящим на трибуне и держащим в руках кусочек мела, может быть отломанный им от тех залежей, которые простираются под городом Норвичем, или одолженный у знакомого плотника, а может, у какого-нибудь профессора. Он начал свою лекцию с описания того, как слой мела на глубине в несколько сотен футов простирается не только под большей частью Англии, но и под всей Европой и странами Леванта, вплоть до Центральной Азии. Мел в основном состоит из простого химического вещества, называемого на современном языке карбонатом кальция, однако микроскопическое исследование показывает, что в нем содержится бесчисленное множество скелетов крохотных существ, населявших те древние моря, которые покрывали когда-то Европу. Хаксли живо описывал, как в течение миллионов лет эти скелетики оседали на дно моря и спрессовывались в мел, как то здесь, то там в эти отложения попадали скелеты более крупных животных, похожих на крокодила, причем при переходе к более глубоким слоям мела эти животные выглядят все более непохожими на своих современных потомков, и следовательно они должны были эволюционировать все те миллионы лет, пока мел оседал.
Хаксли пытался убедить присутствующих, что мир гораздо старше, чем те шесть тысяч лет, которые отведены ему последователями Библии, и что новые живые существа появлялись и эволюционировали с самого начала. Все эти утверждения сейчас общеприняты – никто, имеющий хоть малейшее представление о науке, не сомневается в большом возрасте Земли или реальности эволюции. То, что я хочу обсудить, не имеет никакого отношения к конкретному разделу научного знания, а относится к тому, как все эти знания связаны друг с другом. Именно поэтому я, как и Хаксли, начну с кусочка мела.
Мел белый. Почему? Один ответ, который можно дать сразу, таков: мел белый потому, что он не какого-то другого цвета. Такой ответ безусловно понравился бы лировскому шуту, но на самом деле он не так уж далек от истины. Уже во времена Хаксли знали, что каждый цвет в радуге связан со светом определенной длины волны – более длинные волны соответствуют красному концу спектра, более короткие – голубому. Белый свет рассматривался как смесь света многих разных цветов. При падении света на непрозрачное вещество вроде мела только часть его отражается, а другая часть поглощается. Вещество определенного цвета, например зелено-синего, присущего многим соединениям меди (медно-алюминиевые фосфаты в турмалине) или синего, характерного для соединений хрома, имеет такой цвет потому, что вещество поглощает свет строго определенных длин волн; цвет, который мы видим в свете, отраженном от вещества, связан со светом тех длин волн, которые поглощаются не слишком сильно. Оказывается, что карбонат кальция, из которого и состоит мел, особенно сильно поглощает свет только в области инфракрасных и ультрафиолетовых длин волн, все равно не видимых глазом. Поэтому свет, отраженный от куска мела, имеет практически такое же распределение по длинам волн видимого света, как и свет, падающий на мел. Благодаря этому и возникает ощущение белизны, будь то у мела, облака или снега.