Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Рис. 6.5. Две частицы взаимодействуют: они «сталкиваются между собой», и это приводит к изменению траектории каждой из них
Для большей определённости и простоты представим себе, что одна из двух частиц является электроном, а другая — её античастицей, позитроном. При столкновении частицы и античастицы они аннигилируют с выделением энергии в чистом виде, приводящим к образованию, например, фотона.{48} Чтобы отличать выходящую траекторию фотона от входящих траекторий электрона и позитрона, мы будем, следуя принятому в физике соглашению, изображать её волнистой линией. Обычно фотон проходит небольшое расстояние, после чего высвобождает энергию, полученную от первоначальной электрон-позитронной пары, путём образования другой электрон-позитронной пары, показанной в правой части рис. 6.6. Эти две частицы испытывают электромагнитное взаимодействие и, в конце концов, разлетаются по расходящимся траекториям. Такая последовательность событий имеет определённое сходство с описанием бильярдных шаров.
Рис. 6.6. В квантовой теории поля частица и её античастица могут мгновенно аннигилировать с образованием фотона. Затем этот фотон порождает другую частицу и античастицу, которые движутся по расходящимся траекториям
Нас интересуют детали взаимодействия, в частности, точка, где начальные электрон и позитрон аннигилируют с образованием фотона. Как станет ясно далее, главным является тот факт, что время и место этого события могут быть установлены однозначно и точно, как показано на рис. 6.6.
Как изменится описание, приведённое выше, если после тщательного исследования объектов, которые мы считали нульмерными точками, они окажутся одномерными струнами? Основной процесс взаимодействия будет тем же самым, но теперь движущиеся по пути к столкновению объекты представляют собой осциллирующие петли, показанные на рис. 6.7. Для определённых колебаний струны её моды будут как раз соответствовать позитрону и электрону, движущихся курсом на столкновение, как показано на рис. 6.6. Истинный струнный характер становится очевидным только при исследовании в ультрамикроскопическом масштабе, выходящем далеко за пределы современных экспериментальных возможностей. Как и в случае с точечными частицами, две струны сталкиваются и аннигилируют, превращаясь во вспышку, которая представляет собой фотон и сама по себе является струной, колеблющейся в определённой моде. Таким образом, две исходные струны взаимодействуют между собой, сливаясь и образуя третью струну, как показано на рис. 6.7. Как и в случае точечных частиц, эта струна проходит некоторое расстояние, после чего выделяет энергию, полученную от двух исходных струн, разделяясь на две новые струны, которые продолжают движение. Опять же, со всех точек зрения, кроме той, которая относится к микроскопическим масштабам, это будет выглядеть идентично взаимодействию между точечными частицами на рис. 6.6.
Рис. 6.7. а) Две струны, движущиеся курсом на столкновение, могут слиться и образовать третью струну, которая вслед за этим может разделиться на две струны, движущиеся по расходящимся траекториям. б) Тот же процесс, что и на рис. а), но более явно прослеживающий движение струн. в) «Замедленная киносъёмка» двух взаимодействующих струн даёт мировую поверхность
Существует, однако, радикальное различие между этими двумя описаниями. Мы подчеркнули, что взаимодействие между точечными частицами происходит в однозначно идентифицируемой точке пространства и времени, в точке, с положением которой согласятся все наблюдатели. Как мы сейчас увидим, для взаимодействия между струнами это неверно. Мы продемонстрируем это, сравнив, как Джордж и Грейс, два наблюдателя, находящихся в относительном движении, могли бы описать это взаимодействие. Мы увидим, что они не придут к единому мнению по вопросу о том, где и когда две струны впервые пришли в соприкосновение.
Представим, что мы наблюдаем за взаимодействием двух струн с помощью фотокамеры, затвор которой остаётся открытым, и вся хронология процесса регистрируется на одном фрагменте плёнки.{49} На рис. 6.7в показан результат: его называют мировой поверхностью. Путём «разрезания» мировой поверхности на параллельные части (примерно так же, как мы разрезаем на куски батон хлеба) можно восстановить, момент за моментом, историю взаимодействия струн. Пример такого разрезания показан на рис. 6.8. В частности, на рис. 6.8а мы показали Джорджа, пристально наблюдающего за двумя сближающимися частицами, а также плоскость, которая вычленяет все события в пространстве, происходящие одновременно с его точки зрения. Как часто делалось в предыдущих главах, для наглядности мы отбросили на диаграмме одно пространственное измерение. На самом деле, конечно, существует трёхмерный массив событий, которые происходили одновременно для любого наблюдателя. На рис. 6.8б и 6.8в приведены два последовательных моментальных снимка — два последовательных «среза» мировой поверхности, — показывающих, как Джордж видит две струны, приближающиеся друг к другу. Особую важность имеет отмеченный на рис. 6.8в момент, когда, с точки зрения Джорджа, две струны войдут в соприкосновение и сольются, образовав третью струну.
Рис. 6.8. Две исходные струны (с точки зрения Джорджа) в три последовательных момента времени. В моменты а) и б) струны сближаются, в момент в), с его точки зрения, они впервые соприкоснулись
А теперь повторим всё то же самое для Грейс. Как мы указывали в главе 2, относительное движение Джорджа и Грейс приведёт к тому, что они не согласятся по вопросу о том, какие события являются одновременными. С точки зрения Грейс события в пространстве, являющиеся одновременными, лежат в другой плоскости, показанной на рис. 6.9. Иными словами, по мнению Грейс, для того чтобы момент за моментом восстановить процесс взаимодействия, мировая поверхность на рис. 6.7в должна быть «нарезана» на куски под другим углом.
Рис. 6.9. Две исходные струны (с точки зрения Грейс) в три последовательных момента времени. В моменты а) и б) струны сближаются, в момент в), с её точки зрения, они впервые соприкоснулись
На рис. 6.9б и 6.9в мы снова показали последовательные моменты времени, но теперь уже с точки зрения Грейс, включая момент, когда две начальные струны по её наблюдениям войдут в соприкосновение и образуют третью струну.
Сравнивая рис. 6.8в и 6.9в (результат показан на рис. 6.10), мы видим, что мнения Джорджа и Грейс разделятся относительно того, где и когда две исходные струны впервые соприкоснулись, т. е. где они взаимодействовали. Поскольку струна является протяжённым объектом, это означает, что не существует однозначного места в пространстве или момента во времени, когда струны начали взаимодействовать — эти характеристики зависят от того, как движется наблюдатель.
Рис. 6.10. Мнения Джорджа и Грейс по вопросу о месте, в котором произошло взаимодействие, разойдутся
Если применить те же самые рассуждения к взаимодействию точечных частиц, как показано на рис. 6.11, мы вновь придём к выводам, которые уже получили ранее: существуют определённая точка в пространстве и момент во времени, когда произошло взаимодействие частиц. Всё взаимодействие точечных частиц происходит в одной определённой точке. Когда сила, связанная со взаимодействием, представляет собой гравитационную силу, т. е. когда частица, передающая взаимодействие, является гравитоном, а не фотоном, такая упаковка всей энергии взаимодействия в одну точку ведёт к катастрофическим результатам, вроде упоминавшихся ранее бесконечных ответов. В противоположность этому струны «размазывают» место, в котором происходит взаимодействие. Поскольку разные наблюдатели регистрируют взаимодействие происходящим в разных точках левой части поверхности на рис. 6.10, это означает, что точка взаимодействия в действительности размазана по всей этой области. Это увеличивает область, в которой происходит взаимодействие, и в случае гравитационной силы такое размазывание существенно смягчает ультрамикроскопические свойства, настолько, что вычисления дают нормальные конечные результаты вместо получавшихся ранее бесконечностей. Это более точная версия того размазывания, о котором шла речь в грубом ответе в предыдущем разделе. Подчеркнём ещё раз, что это размазывание приводит к сглаживанию ультрамикроскопических флуктуаций структуры пространства, когда субпланковские расстояния сливаются друг с другом.