Леонид Пономарев - По ту сторону кванта
Этот простой опыт настолько прост, что может даже обидеть некоторых читателей своей тривиальностью. Однако в свое время именно он убедил последних противников квантовой механики. Конечно, вовсе не обязательно для каждого электрона брать отдельную пластинку, вполне достаточно одной пластинки-мишени, только по-прежнему надо пускать электроны-пули поодиночке.
Как и прежде, мы не можем заранее предсказать, в какую точку пластинки попадет каждый следующий электрон. Это случайное событие. Однако если мы выпустим достаточно много электронов, то получим закономерную дифракционную картину.
С такими явлениями мы уже сталкивались при игре в «орел-решку», при бросании кости, при стрельбе в тире. Отмеченная аналогия приводит к естественному предположению: процесс рассеяния электронов подчиняется законам теории вероятностей. При дальнейшем размышлении и после знакомства с идеями Макса Борна эта догадка сменяется уверенностью.
ВОЛНЫ ВЕРОЯТНОСТИ
Макс Борн (1882–1970) преподавал физику в признанном центре немецкой науки — в Геттингене. Он пристально следил за развитием теории атома и был одним из первых, кто придал квантовым идеям Гейзенберга строгую математическую форму. В начале 1927 года он заинтересовался опытами по дифракции электронов.
Само по себе это явление после работ де Бройля уже не казалось удивительным. Любой физик, взглянув на дифракционную картину, мог бы теперь объяснить ее появление с помощью гипотезы о «волнах материи». Более того, по формуле де Бройля λ = h/m v; он мог вычислить длину этих «волн материи» и на опыте убедиться в правильности своих вычислений. Однако по-прежнему никто не мог объяснить, что он разумеет под словами «волны материи». Пульсацию электрона-шарика? Колебания какого-то эфира? Или вибрацию чего-либо еще более гипотетического? То есть насколько материальны сами «волны материи».
Волны вероятностиЛетом 1927 года Макс Борн предположил: «волны материи» — это просто «волны вероятности», которые описывают вероятное поведение отдельного электрона, например вероятность его попадания в определенную точку фотопластинки.
Всякая новая и глубокая идея не имеет логических оснований, хотя нестрогие аналогии, которые к ней привели, можно проследить почти всегда. Поэтому вместо того чтобы доказывать правоту Борна (это невозможно), попытаемся почувствовать естественность его гипотезы. Обратимся снова к игре в «орел-решку» и вспомним причины, которые вынудили нас тогда применить теорию вероятностей. Их три:
полная независимость отдельных бросаний монеты;
полная неразличимость отдельных бросаний;
случайность исхода каждого отдельного бросания, которая проистекает от полного незнания начальных условий каждого опыта, то есть от неопределенности начальной координаты и импульса монеты.
Все эти три условия выполняются в атомных явлениях и, в частности, в опытах по рассеянию электронов. В самом деле:
электроны ведь все-таки частицы, и потому каждый из них рассеивается независимо от других;
кроме того, электроны так бедны свойствами (заряд, масса, спин — и все), что в квантовой механике они неразличимы, а вместе с тем неразличимы и отдельные акты рассеяния;
и наконец, начальные значения координат и импульсов электронов нельзя определить даже в принципе — это запрещено соотношением неопределенностей Гейзенберга δx δp ≥ 1/2h.
В таких условиях бессмысленно искать траекторию каждого электрона. Вместо этого мы должны научиться вычислять вероятность ρ(х) попадания электронов в определенное место х фотопластинки (или, как принято говорить в физике, вычислять функцию распределения ρ(х)).
При игре в «орел-решку» это очень просто: даже без вычислений ясно, что вероятность выпадания «орла» равна 1/2- В квантовой механике дело немного осложняется. Чтобы найти функцию ρ(х), описывающую распределение электронов на фотопластинке, необходимо решить уравнение Шредингера.
Макс Борн утверждал: вероятность ρ(х) найти электрон в точке х равна квадрату волновой функции ρ(x) = |ψ(x)|2
Утверждение Борна легко проверить. В самом деле, разделим дифракционную картину на концентрические круги и пронумеруем их, как мишень в тире. Затем сосчитаем число Nk электронов, попавших в каждое кольцо с радиусом xk, и поделим эти числа на общее число электронов N, попавших на пластинку. Тогда, как и в случае стрелковой мишени, мы получим набор чисел ρ(xk) = Nk/N, которые равны вероятности обнаружить электрон на расстоянии хk от центра мишени. Теперь не трудно нарисовать распределение электронов по пластинке и проследить, как меняется их число при удалении от центра дифракционной картины.
График функции ρ(х) выглядит сложнее, чем диаграмма эллипса рассеяния при стрельбе в тире. Но если вид эллипса нам не под силу предсказать, то функцию ρ(х) мы можем вычислить заранее. Ее вид однозначно определяется законами квантовой механики: несмотря на свою необычность, они все-таки существуют, чего нельзя сказать с уверенностью о законах поведения человека, от которого зависит эллипс рассеяния.
ИЗ ЧЕГО СОСТОИТ ЭЛЕКТРОННАЯ ВОЛНА?
Когда мы стоим на берегу моря, то у нас не возникает сомнений, что на берег набегают волны, а не что-либо другое. И нас не удивляет тот достоверный факт, что все волны состоят из огромного числа частиц — молекул.
Волны вероятности — такая же реальность, как и морские волны. И нас не должно смущать то обстоятельство, что волны эти построены из большого числа отдельных, независимых и случайных событий.
Морской воде присущи и свойства волны, и свойства частиц одновременно. Это нам кажется естественным. И если мы удивлены, обнаружив такие же свойства у вероятности, то наше недоумение, по крайней мере, нелогично.
Когда дует ветер, то в море из беспорядочного скопления отдельных молекул возникают правильные ряды волн. Точно так же, когда мы рассеиваем пучок электронов, то отдельные случайные события — пути электронов — закономерно группируются в единую волну вероятности.
Чтобы убедиться в реальности морских волн, не обязательно попадать в кораблекрушение, но хотя бы поглядеть на море желательно. Чтобы обнаружить волны вероятности, нужны сложные приборы и специальные опыты. Конечно, эти опыты сложнее, чем простой взгляд с прибрежного утеса к горизонту, но ведь нельзя же только на этом основании отрицать само существование вероятностных волн.
Полистав толстые учебники гидродинамики, можно убедиться, что пути молекул, из которых состоит морская волна, ничем не напоминают волновых движений: молекулы движутся по кругам и эллипсам, вверх и вниз и вовсе не участвуют в поступательном движении волны. Они составляют волну, но не следуют за ее движением. Форму этой волны определяют законы гидродинамики.
Из чего состоит электронная волнаТочно так же движение отдельных электронов в атоме вовсе не похоже на те колебания, которым мы уподобили его раньше. Но в целом ненаблюдаемые пути электронов принадлежат единому наблюдаемому ансамблю — волне вероятности. Форму этой волны диктуют законы квантовой механики.
Аналогии такого рода можно продолжать и дальше, но сейчас важнее уяснить другое. Как теперь надо понимать слова «электрон — это волна»? Ведь если это не материальная волна, а волна вероятности, то ее даже нельзя обнаружить в опытах с отдельным электроном. Иногда волновой характер квантовомеханических явлений трактуют как результат некоего мистического взаимодействия большого числа частиц между собой. Это объяснение мотивируют как раз тем, что волновые закономерности атомных явлений вообще нельзя обнаружить, если проводить опыты с отдельно взятой атомной частицей. Ошибка таких рассуждений объясняется элементарным непониманием природы вероятностных законов: вычислить волновую функцию ψ(х) и распределение вероятностей ρ(x) можно для отдельной частицы, но измерить распределение ρ(х) можно только при многократном повторении однотипных испытаний с одинаковыми частицами.
И все же вероятность — это характеристика отдельного события. А потому каждому электрону присущи волновые свойства, хотя мы обнаружить их можем только в пучке электронов. (Точно так же при игре в «орел-решку» вероятность 1/2 выпадения «орла» — это свойство каждого события, но измерить эту вероятность можно лишь при большом числе испытаний.)
Без понятия вероятности современную квантовую механику представить очень трудно. Пожалуй, это главное, чем она отличается от механики классической. Конечно, и классическая физика постоянно использует теорию вероятностей. Например, в кинетической теории газов. Однако там еще можно успокаивать себя в надежде обойтись без теории вероятностей, если удастся научиться решать одновременно очень много уравнений движения молекул газа. Квантовая механика не оставляет такой надежды, ее уравнения принципиально позволяют вычислять только вероятности событий. Тем не менее для атомных явлений это описание будет настолько же полным, насколько исчерпывающе описание классического движения с помощью понятия траектории.