Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
«Настоящим» ppm-2 посвящены §5.2 и 5.3.
В них показано, что те двигатели, которые действительно могут работать, — не «вечные» (не ppm-2), а те, которые действительно «вечные» (ppm-2), — не могут работать.
В §5.4 описаны наиболее интересные псевдо-ppm.
5.2. Проекты термомеханических ppm-2
Трудно сейчас установить, когда именно был предложен первый проект вечного двигателя второго рода. Во всяком случае, достоверно известно, что это произошло более 100 лет назад.
Первым известным изобретателем в этой области был некий американский профессор Гэмджи, предложивший сконструированный им так называемый нуль-мотор, который должен был работать, извлекая теплоту, как мы бы теперь сказали, из равновесной окружающей среды. Было это в 1880 г.
Вторым, кто предложил двигатель, работающий на «теплоте окружающей среды», был тоже американец Ч. Триплер, человек более известный, чем Гэмджи, в связи с тем, что он сконструировал (правда, на основе уже известных разработок) действующую установку для сжижения воздуха. Публикация о двигателе Триплера появилась впервые в 1899 г.
Оба эти изобретения связаны одной и той же особенностью: происходящие в них процессы должны были протекать при температуре ниже окружающей среды. Именно здесь, в специфической области низких температур, где «на холоде», казалось бы, все происходит иначе, чем в традиционной теплотехнике, оба изобретателя хотели решить энергетическую проблему по-новому. Нет сомнения, что именно такое «холодное» направление мыслей первых создателей проектов ppm-2 связано с сенсационными успехами техники низких температур, которые как раз пришлись на конец 70-х-90-е годы XIX века.
Самая низкая температура, которую до этого удалось получить М. Фарадею в 1840 г., составила —110 °С, но в 1877 г. Л. Кайете и независимо от него Р. Пикте добились температуры —180 °С, а в 90-х годах К. Ольшевскому удалось понизить рубеж рекордно низких температур до —200 — 230 °С. Наконец, Д. Дьюар в 1898 г. сжижил водород при — 253°С. Этот резкий прорыв в область небывало низких температур произвел очень сильное впечатление на современников.
Одновременно развивались и технические приложения низких температур. Ш. Телье (1867 г.), а затем К. Линде в 70-х годах были разработаны аммиачные холодильные машины, а в 1895 г. К. Линде и Р. Хэмпсон почти одновременно создали промышленные установки для сжижения воздуха.
Именно два последних достижения низкотемпературной техники того времени — аммиачная холодильная машина и установка сжижения воздуха — послужили соответственно прототипами проектов Гэмджи и Триплера. Прототипами их назвать можно только условно, поскольку идея была совсем новой: использовать холодильные машины в совершенно другом плане — как двигатели.
Авторская схема «нуль-мотора» приведена на рис. 5.1. В дальнейшем она была усовершенствована (добавлен еще один котел, введен струйный эжектор). Однако принципа работы «нуль-мотора» эти изменения не касались.
Рис. 5.1. Схема «нуль-мотора» Гэмджи: а — впуск пара в расширительную машину; б — выпуск жидкости из расширительной машины; 1 — котел; 2 — расширительная машина (детандер); 3 — впускной клапан; 4 — выпускной клапан; 5 — шатунно-кривошипный механизм с маховиком; 6 — насос для жидкого аммиакаКак же, по мысли автора, должен был работать этот двигатель? Известно, что при температуре окружающей среды (например, 300 К = 27 °С) аммиак кипит при давлении 1,0 МПа (10 ат)[69]. Следовательно, в котле с жидким аммиаком, помещенным в эту среду, установится повышенное по сравнению с атмосферным давление пара. Можно направить этот пар в низкотемпературную поршневую машину (так называемый детандер). В этом случае он расширяется, и давление становится, например 0,1 МПа (1 ат), отдавая внешнюю работу, соответственно охлаждается до 250 К (—23 °С) и частично при этом ожижается. Жидкий аммиак вместе с паром через выпускной клапан поступает в насос, который приводится в движение самой расширительной машиной, — детандером. В насосе давление аммиака снова поднимается до 1,0 МПа (10 ат). Холодная смесь жидкого аммиака и пара возвращается в котел. Здесь за счет теплоты QО.С., поступающей из более теплой атмосферы (напомним, что аммиак после расширения имеет температуру — 23 °С), он снова испаряется. Пар отводится в детандер, и цикл повторяется. Таким образом, двигатель работает, отдавая потребителю работу L (равную работе, производимой детандером, за вычетом небольшой ее части, затраченной на привод насоса).
Никакого нарушения первого закона термодинамики — закона сохранения энергии — здесь нет: сколько ее подводится из окружающей среды QО.С., столько и отводится в виде работы (L = QО.С.). Вроде бы все в порядке.
Но… Всегда это проклятое «но», как только дело касается ppm. Но двигатель почему-то не работал. В чем же дело?
Чтобы ответить на этот вопрос, составим энтропийный и эксергетический балансы «нуль-мотора». С энтропийным балансом дело обстоит хуже, чем с энергетическим: с теплотой вносится некоторая энтропия QО.С./ TО.С., а с работой энтропия не выносится, так как энтропия потока работы равна нулю. Следовательно, энтропия не только уменьшается, а даже исчезает. Это явное нарушение второго закона.
То же показывает эксергетический баланс. Эксергия поступающей теплоты равна нулю, она неработоспособна, так как имеет температуру окружающей среды TО.С.. Получаемая работа равна эксергии, следовательно, эксергия отводится, но не подводится — она возникает «из ничего». КПД «нуль-мотора» равен бесконечности:
Таким образом, «нуль-мотор» — это типичный «монотермический двигатель» — ppm-2.
Представим себя на минуту в положении того механика, которому надо запустить уже собранный и заправленный аммиаком двигатель. Пока он неподвижен, и это совершенно естественно, так как он теплый и давление везде одинаково — 1,0 МПа (10 ат). Как сдвинуть все части машины с места? Попробуем самый простой способ — начнем раскручивать маховик и затем отпустим его, чтобы машина уже сама продолжила работу. Однако можно заранее предсказать, что машина не разгонится, а, напротив, постепенно остановится. Попытки привести ее в самостоятельное движение и любыми другими способами приведут к тому же результату.
Объясняется это очень просто. Чтобы расширительная машина (детандер) работала, нужно, чтобы давление за ней было ниже, чем перед ней. Гэмджи думал, что так и будет, поскольку насос откачает парожидкостную смесь из трубы между детандером и насосом. Однако, чтобы это произошло, нужно затратить работу на привод насоса, а где ее взять? Детандер дать ее не может, так как давления и до него, и после равны, а если его раскрутить извне (при запуске), он будет сам работать тоже как насос, перекачивая аммиак в трубу перед насосом. При этом аммиак в нем будет не охлаждаться, а даже нагреваться. Таким образом «нуль-мотор» сможет работать только в том случае, если его крутить внешним приводом, затрачивая работу L, а не получая ее. Соответствующее количество теплоты, в которую бесполезно «перемолотится» работа, будет отдаваться в окружающую среду.
Другими словами, «нуль-мотор» будет вместо работы выдавать энтропию, приближая, если верить Клаузиусу, конец света. Таким образом, название «нуль-мотор», придуманное Гэмджи, сыграло с ним дурную шутку: двигатель действительно в полном смысле слова оказался нуль-мотором, но не из-за нулевой потребности в топливе, а из-за нулевого результата — отсутствия полезно производимой работы.
Рис. 5.2. Зависимость температуры кипения аммиака от давленияМожно ли что-нибудь сделать, чтобы заставить «нуль-мотор» производить работу, а не «съедать» ее? Эта задача решается очень просто. Нужно перед насосом включить в схему еще один аппарат — конденсатор, как показано на рис. 5.3, и отводить от него теплоту Q при более низкой температуре T0 < TО.С.. Тогда аммиак будет в нем сжижаться, и давление его соответственно снизится. Если, например, проводить конденсацию при T0 = 250 К (—23 °С), то, как видно из кривой на рис. 5.2, давление в конденсаторе установится около 0,16 МПа (1,6 ат). Двигатель сразу оживет, так как на детандере появится перепад давлений; он начнет работать, расширяя аммиак с 1,0 МПа (10 ат) до 0,16 МПа (1,6 ат). Часть произведенной работы пойдет на насос, а остальная — полезная работа — будет выдана потребителю. Это будет большая часть работы детандера, так как насос отберет только небольшую ее часть (он перекачивает жидкость, объем которой в десятки раз меньше, чем пара; соответственно меньше и нужная работа).
Рис. 5.3. «Усовершенствованный» двигатель Гэмджи с отбором теплоты Q0 на нижнем темтемпературном уровнеТакой двигатель заработал бы потому, что было бы выполнено требование второго закона — имелась бы разность температур (TО.С. – T0). При TО.С. подводилась бы теплота QО.С., а при T0 отводилась бы теплота Q0 < QО.С. Разность QО.С. — Q0 давала бы работу L = QО.С. — Q0 в полном соответствии не только с первым, но и со вторым законом термодинамики. «Монотермический» двигатель превратился бы в обычный, работающий между двумя температурными уровнями.